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A Multi Asperity Model of Contact 
Between a Smooth Sphere and a Rough 
Flat Surface in Presence of Adhesion  
 
 

Multi asperity elastic-plastic adhesive contact between a smooth sphere and a rough flat 
surface is considered. To incorporate the effect of adhesion, JKR (Johnson–Kendall–Roberts) 
contacts are assumed and the mixed asperity contact model for a sphere with rough flats, 
developed by Kagami et al, is used. The results are obtained in terms of plots of radial pressure 
distribution, contact radius versus load, and compliance versus load and they are studied for 
different conditions that arise from varying loading and material parameters. The results 
obtained exhibit a negative pressure region at the edge of contact. It is observed that larger 
sphere radius gives lower pressure distribution and lower compliance. 
 
Keywords: Sphere on flat, Elastic–plastic contact, Adhesion, Roughness  
 
 

1. INTRODUCTION  
 
When two smooth and clean surfaces are brought 
together, a finite normal force is required to pull the 
two apart. This phenomenon of surfaces sticking 
together is known as adhesion and the force 
required to separate the surfaces is called force of 
adhesion or adhesive force. There has been a vast 
amount of experimental and analytical studies done 
in the field of adhesion and adhesive forces and 
there exist two widely known models for predicting 
the adhesive force, namely JKR model [1] and 
DMT model [2]. Tabor [3] compared the 
assumptions and predictions of the JKR and DMT 
models and pointed out the inconsistencies between 
the two. Muller et al [4] showed that the two 
models can be considered as two opposite extremes 
of adhesive contact according to a dimensionless 
number called Tabor parameter (μ). The effect of 
surface roughness on adhesion at the contact of 
rough solids has also been studied analytically in 
great detail by Roy Chowdhury and Ghosh [5] 
using Greenwood and Williamson’s [6] rough 
surface model and JKR adhesion model. However, 
all these models consider contact between two 
rough flat surfaces, although contact between rough 
curved surfaces is also very common. 
Contact of a sphere with a flat rough surface is 

significantly different from the case of contact 
between flat rough surfaces. In the former case, 
there exists a central region of continuous contacts 
because of greater deformation of the asperities. 
This region is surrounded by a fringe where only 
the taller asperities touch, and beyond this, as the 
gap between the surfaces widens, fewer and fewer 
asperities come into contact. Greenwood and Tripp 
[7] carried out the first analytical study of contact 
of rough curved surfaces and investigated the effect 
of roughness on contact of elastic spherical bodies. 
In this model contact between two spheres is 
approximated by contact between a sphere and a 
plate. Yip and Vernart [8] carried out an elastic 
analysis on deformation of rough spheres, rough 
cylinders, and rough annuli in contact. Nuri [9] 
considered the normal approach in the case of 
contact between two curved surfaces. Mikic and 
Roca [10] put forward an alternative numerical 
model by assuming plastic deformation of the 
asperities. Kagami et al [11] theoretically analyzed 
the contact between a smooth sphere and a rough 
plate for a mixed asperity contact theory. Bahrami 
et al [12] considered the effect of roughness on 
elastic contact of spherical bodies, assuming plastic 
deformation of the asperities.  
 
A review of the existing literature reveals that work 
on adhesive contact of sphere with rough flat 
surface is limited [13]. Moreover, such an analysis 
is essential for developing fundamental 
understanding of interfacial phenomena on a small 
scale and for analyzing the experimental 
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observations on the contact behaviour of 
micro/nano-structures relevant in nano-tribology 
and nano-mechanics applications. 
 
 
2. BASIC CONSIDERATIONS  
 
In contact analysis of flat rough surfaces the load is 
expressed as a function of the separation of the two 
surfaces, which is constant. But for contact between 
a curved surface and a flat the separation between 
the two surfaces increases along the radial direction 
from the center of contact. So, a relation between 
the separation and the radial position is required to 
find out the desired results. Moreover, in the case of 
curved rough surface contact, the bulk or substrate 
of the bodies in contact is considered deformable as 
well as the asperities. This implies that the contact 
of rough curved bodies includes two problems: 
deformation of the substrate or bulk and 
deformation of the asperities. In general, the bulk 
deformation is considered elastic, but asperities can 
deform in different ways, for example, fully elastic, 
fully plastic, or partly elastic and partly plastic. 
 
The present work considers a theoretical analysis of 
loading behaviour in the adhesive contact between 
a smooth sphere and a rough flat following mixed 
asperity model of Kagami et al [11] and RG model 
[5] of multi asperity adhesive contact. It is assumed 
that an asperity deforms elastically or plastically 
based on whether its deformation is below or above 
a critical value. This critical value of deformation 
of an individual asperity is obtained following the 
RG model, whereas the pressure distribution is 
calculated following the model of Kagami et al  

[11]. Figure 1 shows that a rough surface with a 
distribution, f(z), of asperity heights is pressed 
under a load P by a smooth sphere of radius, B. It is 
assumed that the distribution of asperity heights is 
Gaussian in nature and given by, 
 

( ) )2( 22

)2(1)( σπσ zezf −= .            (1) 
 

Here σ  is the standard deviation of asperity height 
distribution. The number of asperities per unit area 
is taken as 0η . A pressure distribution q(r) is 
produced by the contact within a circular contact 
region of radius a. The coordinate r lies in a radially 
outward direction from the center of the contact 
spot. Under a load P, the compliance (α ) between 
the sphere and the rough surface produced at a 
distance r from the center of the contact area is a 
function of the asperity deformation (u(r)), the 
elastic deformation (w(r)) of the sphere and the 
substrate of the rough flat and a distance Br 22  
(shown in Figure 1) and is represented as [11], 
  

( ) ( ) Brrwru 22++=α .               (2) 
 
 
3. ADHESIVE CONTACT 
 
Incorporation of adhesion in the mixed asperity 
model proposed by Kagami et al [11] is carried out 
by considering JKR contacts and using the 
principles of RG model. In case of contact between 
a smooth sphere and a flat in presence of surface 
forces, JKR model predicts that the load on an 
elastically deformed asperity is given by, 
 

 

 
 

Figure 1. Contact between a smooth sphere and a rough flat surface 
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Here E  is the equivalent elastic modulus given 

by [ ] 1

2
2

21
2

1 11
−

−+−= EEE νν , γ is the work 
of adhesion per unit area. 1δ  is apparent 
displacement and R  is the radius of curvature of 
the hemispherical asperity tip. In expression (1), the 
first term is the Hertzian load term and the second 
one is the adhesive influence term. The load on a 
plastically deformed asperity [14] can be obtained 
from an energy balance approach at the contact and 
is given by, 
 

γππ RHaP pp 22 −= .                                    (4) 
 
Here, H is the hardness and ap represents the 
contact radius during plastic loading and from 
geometric considerations, assuming that the change 
in the contact geometry owing to material flow is 
negligible 2/1)2( δRa p = , where δ is the asperity 
displacement. As a modeling approximation, it is 
considered that plastic deformation initiates when 
the following condition is satisfied, 
 

HaP ee =2π .                              (5)  
 
Here, ae is the apparent Hertzian contact radius 
given by 2/1

1 )( δR . Substituting equations (3) in (5) 
the critical displacement (δc1) to commence plastic 
deformation can be obtained. 
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where, K = (4E/3). This equation provides a 
plasticity condition and can be solved to give the 
critical displacement (δc1), which distinguishes 
between the elastically and plastically deformed 
asperities. But, it must be kept in mind that δc1 in 
the above equation is the apparent displacement 
corresponding to an apparent Hertzian load given 

by ( ) ]6[ 213KaPe πγ+ . Following Johnson, δ1 may 
be expressed in terms of actual displacement: 

( )( ) 2
1

1 632 Kaπγδδ += . So, actual critical 
displacement δc can be determined from the above 
expression. 
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The asperity deformation is determined in a similar 
way to the mixed asperity model proposed by 
Kagami et al. A pressure distribution q(r) is 
assumed depending on two constants a and b in the 
following form. 
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Integration of q(r) with respect to r from 0 to a  
gives the external load P. The constant term ( 0q ) 
can be found out in terms of load (P) and the two 
constants a  and b  as follows. 
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On the basis of this assumed distribution the elastic 
deformation (w(r)) of the sphere and the rough flat 
subsurface is found out. It is known that for a 
concentrated force acting on the boundary of a 
semi-infinite solid, the displacement in the direction 
of the load at the boundary plane, denoted by z = 0 
is given by [15], ( ) )()1( 2

0 rEPw z πυ−== . 
From this relation, displacements caused by a 
distributed load can be found out by superposition. 
In the present scenario, the case of a uniform load 
distributed over the area of a circle of radius a is 
considered. A point M  on the surface of the body 
at a distance r  from the center of the circle is 
chosen such that it lies within the loaded area i.e. 

ar < . Now, a small element of the loaded area, as 
shown by the shaded area in Figure 2, bounded by 
two radii including the angle ‘ εd ’ and two arcs of 
circle with radii ‘s’ and ‘s + ds’, all drawn from 
point ‘ M ’ is taken. The load on this element is 

εddsqs .. . So, after performing the necessary 
integrations the total deflection is 

επυ ddsEqw ∫∫−= ))1(( 2 . In this derivation a 

uniformly distributed load is considered and so ‘q’ 
is a constant term appearing outside the double 
integrations. But if the load varies over the area, 
then the ‘q’ term should be kept inside the double 
integrations as a function the coordinates s and ε . 
Finally, the elastic deformation w(r) of the sphere 
and the substrate of the rough flat is given by,  
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Figure 2. Circular area of radius a under distributed 
load showing the point M and the chosen element 
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with x = ( )2222 )cos2( babrssr ee −−+− −ε . 
 
The asperity deformation, u(r), is determined by 
using the following expression given by Kagami et 
al. 
 
( ) )()(2)( 22 rwawBraru −+−=             (11) 

 
Asperity deformation is a function of the radial 
distance (r) from the center of the contact. So, 
depending on whether at a particular radial distance 
(r), the asperity deformation (u(r)) is greater or less 
than the critical value (δc), the nature of the contact 
is determined and the corresponding pressure 
distribution is obtained. Expressions of the pressure 
distributions in non-dimensional form in terms of 
elastic adhesion index ( )θ  and plasticity index ( )ψ  
corresponding to the different regimes of contact 
are given below. 
Case 1: ( )0** uc ≥δ : Elastic contact  
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Case 2: ( )0** uc <δ  and ( )ruc

** ≤δ : Elastic-

plastic contact 
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Case 3: ( )0** uc <δ  and ( )ruc

** >δ : Elastic contact 
In this case, the normalised pressure will be given 
by equation (12). 
 
In the above equations, the normalised pressure, 
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RHE σψ = ; σ  being the r.m.s roughness.  
The calculated pressure distribution is compared 
with the assumed pressure distribution and until the 
difference between the two pressure values at r = 0 
falls below a predefined error limit, the values of a 
and b are varied.  
Equations (4) and (5) can also be written in non-
dimensional form in terms of elastic adhesion index 
and plasticity index. 
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4. RESULTS AND DISCUSSION 
 
The equations developed in the previous sections 
are evaluated to obtain the non-dimensional 
pressure distribution along the radius of the contact 
spot. In addition, contact radius versus applied load 
and compliance versus applied load plots for 
variations in the sphere radius are obtained. The 
evaluation of the equations is carried out utilizing 
inbuilt MATLAB functions ‘quad’ and ‘trapz’. The 
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appropriate values of a and b are determined 
following a trial and error method, considering the 
criterion of equality of assumed and calculated 
pressures at r = 0. For a given load, depending on 
the material properties, nature of adhesion, surface 
roughness, and radius of the sphere, the contact 
radius a attains a certain fixed value, and in order to 
find that value, the trial and error method is 
employed. By choosing a and b, the assumed 
pressure distribution is known through equations 
(8) and (9), and from this distribution, the elastic 
bulk deformation and asperity deformation are 
calculated with the help of equations (10) and (11), 
respectively. The value of u(r) thus obtained is used 
according to the condition satisfied (cases 1, 2, and 
3 given by equations (12) and (13)) to calculate a 
new pressure distribution. If the termination 
criterion is not satisfied, a new set of a and b values 
is chosen, and the same process is followed until 
the two distributions are sufficiently close. 
 
To compute the pressure distribution, material and 
surface parameters such as equivalent elastic 
modulus (E), hardness (H), work of adhesion (γ), 
sphere radius (B), asperity tip radius (R), asperity 
density (η0), and r.m.s. roughness (σ) for the rough 
flat need to be supplied. In the current scenario 
material properties corresponding to AISI 1095 
carbon steel is considered. So, the values of elastic 
modulus, hardness and Poisson’s ratio are as 
follows: E = 200 GPa, H = 6.08 GPa, υ  = 0.29. 
The radius of the sphere (B) is taken as 3 mm. For 
considering the effect of variation in work of 
adhesion (γ) on loading behaviour, the following 
values of surface properties are used: σ = 0.2 μm, R 
= 250 μm, η0 = 800 mm−2, z0 = 0.3 nm. Apart from 
these parameters three different values of work of 
adhesion, γ = 5100, 3400 and 476 mJ/m2, are 
taken into account. Using the above values the 
elastic adhesion index (θ) and Tabor parameter 
( 3/1322 )/( ozERγμ = ) are determined and 
furnished in Table 1. 
 
Elastic adhesion index indicates the relative 
importance of surface force induced adhesion for 
elastically deformed asperities when compared with 
the elastic force on an individual asperity. Table 1. 
shows that Tabor Parameter is greater than 5 for all 
the cases, which ensures that JKR regime of 
adhesion is applicable. These parameters also 
satisfy the dimensionless Archard’s parameter 
(σRη0) of 0.04. In all these cases, the plasticity 
index ψ comes out as 0.5079. As ψ < 0.6, it 
indicates that the contact conditions are 
predominantly elastic in nature. For different 

combinations of these parameters, the external load 
(P) is also supplied to evaluate the non-dimensional 
pressure expressions. For each external applied 
load, the compliance (α) is calculated from equation 
(2). This model has a limitation at zero loads as the 
assumed pressure distribution given by equations 
(8) and (9) becomes zero. So a small value close to 
zero is considered in the simulation of zero load 
situations. 
  
Table 1. Values of elastic adhesion index (θ) and 
Tabor parameter (μ) corresponding to different 
work of adhesion (γ)  

γ (mJ/m2) θ  μ  

476 1730 5.60 
3400 242.20 20.78 
5100 161.46 27.23 

 
The variation of pressure distribution for varying 
work of adhesion can be seen from Figures 3(a) and 
3(b). These figures show the plots of normalized 
pressure distribution along the contact radius for 
three different values of work of adhesion at two 
different loads. It is seen from Figure 3(a) that for 
low external load (P = 0.001 N) there exists a 
region of negative pressure (tensile) at the edge of 
contact. In JKR model, in case of contact between 
smooth spheres, there always exists a tensile stress 
singularity at the edge of contact owing to the 
presence of a surface tension. Therefore, the results 
obtained here are in agreement with the JKR model. 
Moreover, the singularity at the edge of contact, 
which is present in the JKR model, has been 
replaced by a continuous distribution owing to the 
effect of roughness. This negative pressure region 
may be caused by the stretching of the asperities at 
the edge of contact because of the adhesion effect. 
However the negative zone is not observed for high 
load value in Figure 3(b). These figures also show 
that with an increase in adhesion, the maximum 
pressure at r = 0 decreases and this can be attributed 
to the fact that with higher adhesion, the overall 
contact area increases and this brings down the 
maximum pressure. 
 
Figures 4(a) and 4(b) show the variation of contact 
radius and compliance with applied load for 
varying work of adhesion in the positive range of 
applied loads. Similar plots of contact radius and 
compliance with applied load corresponding to 
different work of adhesion at low and negative load 
range are presented in Figures 5(a) and 5(b). 
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(a) 

 
(b) 

 
Figure 3. Pressure distribution for varying work of 

adhesion (γ = 5100, 3400 and 476 mJ/m2) at  
(a) P = 0.001 N and (b) P = 1 N 

 
From Figure 5(a), it is evident that at near zero 
loads, a finite contact radius exists and high values 
of γ imply higher contact radius. The negative 
loading signifies the tensile load required 
maintaining a particular contact radius, and from 
this, an idea of the pull on load may be acquired. 
Figure 5(a) provides a good idea about the pull on 
loads for varying work of adhesion. It is found that 
as the adhesive effect increases, the pull-on load 
also increases. From Figures 4(b) and 5(b), it is 
clear that for a certain applied load, the value of 
compliance in high adhesion is more than that in 
low adhesion. This is easily explained by the fact 
that with high adhesion, the sphere is pulled more 
towards the rough flat and hence the compliance is 
high. In addition, it is seen from these figures that 
at the initial stages when the applied load is low, 
the increase in the compliance values is more than 
that at higher loads.  

 
(a) 

 
(b) 

 
Figure 4. Variation of (a) contact radius (mm) and 
(b) compliance (α , mm) with applied load (N) for 

varying work of adhesion  
(γ = 5100, 3400 and 476 mJ/m2) 

 
Figures 6(a) and 6(b) demonstrate the effect of 
change in sphere radius (B) on variation of 
compliance and contact radius with applied load. 
The results are generated for a work of adhesion 
5100 mJ/m2 corresponding to three different values 
of sphere radius: B = 1, 3, and 6 mm. It is seen that 
as the sphere radius increases, compliance at a 
certain load decreases. In fact, throughout the entire 
load range, the lower sphere radius corresponds to 
higher compliance. For a certain load, variation in 
the sphere radius means variation in the contact 
radius between the sphere and the rough flat. A 
smaller sphere radius produces a smaller radius of 
contact and smaller area of contact. As a result, 
smaller sphere radius leads to higher compliance 
having higher depth of penetration. Figure 6(b), 
which shows the variation of contact radius with 
applied load for different values of sphere radius, 
lends support to this argument. Figure 7 shows the 
corresponding pressure distribution at a fixed load 
for three different sphere radii. 
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(a) 

 
(b) 

 
Figure 5. Variation of (a) contact radius (mm) and 
(b) compliance (α , mm) with applied load (N) for 
varying work of adhesion (γ = 5100, 3400 and 476 

mJ/m2) at low and negative load range 

 
It may be noted here that the present results are 
applicable for Tabor parameter (μ ) greater than 5 
implying that the contact is in JKR regime of 
adhesion. For other ranges of Tabor parameter (μ ), 
the present formulation will not be applicable. One 
needs to use suitable adhesion models depending on 
the range of Tabor parameter. For μ <0.1, DMT 
model [2] needs to be used and for 0.1<μ <5, 
Maugis model [16] is to be used. Moreover, the 
material and surface properties considered in 
present simulations yield the values of plasticity 
index ψ<0.6 indicating that the contact conditions 
are predominantly elastic in nature. However, the 
present model is applicable for all ranges of ψ so 
long as the adhesion regime is in JKR domain. 

 

 

(a) 

 

(b) 
 

Figure 6. Variation of (a) compliance (α , mm) 
and (b) contact radius (mm) with applied load (N) 

for varying sphere radii 
 
 

 
 

Figure 7. Pressure distribution for varying sphere 
radii at P = 0.001 N 
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5. CONCLUSION 
 
The present work considers the contact behaviour 
of a smooth sphere against a rough flat surface in 
adhesive contact using a mixed asperity contact 
model and JKR contacts. The pressure distribution 
along the radius of contact spot is obtained in terms 
of well-established elastic adhesion index and 
plasticity index. The results show a negative 
pressure region at the edge of contact that may be 
attributed to the stretching of the asperities because 
of the adhesion effect in the fringes of contact. This 
trend is in agreement with the JKR model. The 
results show that with an increase in adhesion, 
contact area increases and the maximum 
compressive pressure comes down. It is observed 
that larger sphere radius gives lower pressure 
distribution and lower compliance. 
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