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	 A	B	S	T	R	A	C	T	

The	 effect	of	 strain	hardening	and	hardening	 rule	on	 shakedown	behavior	 is	
studied	 in	 a	multiple	 normal	 interaction	 process	 of	 an	 elastic	 plastic	 sphere	
against	a	rigid	flat	using	finite	element	software	ANSYS	under	full	stick	contact	
condition.	 Seven	 to	 ten	 repeated	 loading	 cycles	 are	 considered	 in	 the	
interference	controlled	multiple	normal	loading	unloading	depending	upon	the	
maximum	interference	of	loading.	Emphasis	is	placed	on	wide	range	of	tangent	
modulus	 by	 varying	 the	 hardening	 parameter	within	 the	 range	 as	 found	 for	
most	of	the	practical	materials	with	both	the	kinematic	and	isotropic	hardening	
model,	which	has	not	yet	been	investigated.	It	is	found	that	with	small	tangent	
modulus,	the	cyclic	loading	process	gradually	converges	into	elastic	shakedown	
with	 both	 kinematic	and	 isotropic	 strain	 hardening	 laws;	 similar	 to	 recently	
published	 finite	element	based	normal	 loading	unloading	results.	The	effect	of	
strain	hardening	laws	on	shakedown	behavior	is	pronounced	at	higher	tangent	
modulus.	The	higher	dimensionless	interference	of	loading	and	higher	tangent	
modulus	 increase	 the	 dimensionless	 dissipated	 energy	 with	 kinematic	
hardening	rule.	The	load‐interference	hysteretic	response	with	varying	tangent	
modulus	using	both	kinematic	and	 isotropic	hardening	 laws	 is	 interpreted	 in	
the	context	of	elastic	and	plastic	shakedown.	
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1. INTRODUCTION		
	
When	a	material	is	subjected	to	repeated	normal	
loading‐unloading,	 its	 deformation	 depends	 on	
the	 extent	 of	 the	 amplitude	 of	 the	 maximum	
stress	 with	 respect	 to	 the	 yield	 stress	 of	 the	
material.	 When	 contact	 stress	 exceeds	 yield	
stress,	plastic	flow	of	the	material	occurs	beyond	
the	 elastic	 limit	 loading.	 Residual	 stresses,	
developed	 after	 complete	 unloading,	 are	

protective	in	nature	as	they	reduce	the	tendency	
of	 plastic	 flow	 in	 the	 subsequent	 loading.	 Strain	
hardening	 of	 the	 material	 strongly	 affects	 the	
development	 of	 residual	 strain	 after	 complete	
unloading.	 The	 cyclic	 response	may	 be	 perfectly	
elastic	and	reversible,	stabilized	and	closed	cycle	
of	 plastic	 strain	 or	 consists	 of	 repetitive	
accumulation	 of	 incremental	 unidirectional	
plastic	strain	[1‐3]	depending	on	the	 intensity	of	
loading,	 elastic	 and	 plastic	 properties	 of	 the	
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materials	and	the	tribological	system	parameters	
like	 friction,	wear	 etc.	 [4].	 Thus	 the	modeling	 of	
cyclic	 response	 is	 quite	 complex.	 The	 repeated	
cyclic	loading	promotes	fatigue	of	the	deformable	
or	softer	materials.	Non‐conforming	bodies	when	
brought	 into	contact	without	deformation,	either	
point	 or	 line	 contact	may	 occur	 [5].	 The	 type	 of	
relative	 motion	 between	 mating	 surfaces	
produces	 sliding,	 rolling	 contact.	 The	 prominent	
contact	 damages	 encountered	 due	 to	 the	 sliding	
and	 rolling	 contact	 fatigues	 are	 galling,	 surface	
distress,	 spalling,	pitting	etc.	 [6].	 Fretting	 fatigue	
is	 observed	 owing	 to	 the	 relative	 cyclic	 motion	
with	 small	 amplitude	 between	 two	 oscillating	
surfaces	[7].	
	
The	 basic	 step	 of	 investigating	 the	 cyclic	
response	 of	 rough	 surfaces	 involves	 the	 study	
with	 single	 asperity	 contact.	 Cattaneo	 [8]	 and	
then	 Mindlin	 [9]	 independently	 published	 the	
solutions	for	pure	elastic	sliding	contact.	Both	of	
them	assumed	a	central	stick	region	surrounded	
by	 a	 slip	 annulus	 in	 the	 contact	 area.	 The	 local	
Coulomb’s	 friction	 law	governs	 the	slip	annulus	
region	 and	 it	 increases	 with	 the	 increase	 in	
tangential	 loading.	 The	 local	 Coulomb’s	 friction	
law	couples	normal	stress	with	local	shear	stress	
and	 the	 central	 stick	 region	 gets	 eliminated	 at	
the	point	of	sliding	 inception.	Mindlin	et	al.	 [10,	
11]	 offered	 first	 analytical	 solutions	 for	 the	
problem	 of	 oscillating	 tangential	 loading.	 The	
derived	 force‐displacement	 hysteretic	 loop	 by	
Mindlin	 et	 al.	 is	 concerned	 about	 the	 energy	
dissipation	 due	 to	 partial	 frictional	 sliding	
between	 the	 contacting	 surfaces	 during	 the	
loading	 cycles.	 The	 fretting	 models,	 which	 are	
based	 on	 the	 assumptions	 of	 Cattaneo‐Mindilin	
[8,9],	 ignored	 the	 formation	of	 junction	growth.	
The	authors	of	fretting	models	[12,13]	also	made	
simplified	 assumption	 that	 the	 normal	 contact	
pressure	 and	 the	 contact	 area,	 which	 resulted	
from	 the	 normal	 loading	 alone,	 remain	
unchanged	 during	 application	 of	 the	 tangential	
loading.	 Bowden	 and	 Tabor	 [14]	 described	 the	
sliding	 inception	 and	 static	 friction	 as	 a	 failure	
mechanism,	 which	 are	 functions	 of	 material	
properties.	The	approach	of	Bowden	and	Tabor	
was	different	from	Cattaneo‐Mindlin	in	the	sense	
that	in	the	former	the	static	friction	coefficient	is	
not	known	a	priori.	Bowden	and	Tabor	was	also	
successful	to	completely	decouple	the	maximum	
shear	 stresses	 at	 the	 contact	 interface	 from	 the	
normal	 stresses.	 Based	 on	 the	 assumptions	 of	
Bowden	 and	 Tabor,	 Tabor	 [15]	 further	

presented	 the	 concept	 of	 junction	 growth	 in	
metallic	friction.	Recently,	Ovcharenko	et	al.	[16]	
investigated	 the	 junction	 growth	 in	 elastic	
plastic	 spherical	 contact.	 The	 materials	 deform	
elastically	 following	 Hooke’s	 law	 within	 elastic	
limit.	Above	elastic	limit	the	deformation	follows	
certain	 strain‐hardening	 rule.	 No	 bodies	 are	
perfectly	 elastic,	 so	 during	 cyclic	 loading‐
unloading	even	within	elastic	limit	some	energy	
is	dissipated.	Tabor	[17]	reported	the	resistance	
to	 rolling	 of	 bodies	 of	 imperfectly	 elastic	
material,	which	 can	 also	 be	 expressed	 in	 terms	
of	 their	 hysteresis	 loss	 factor.	 The	 model	 of	
rolling	 friction	 provided	 by	 Tabor	 was	 well	
supported	 by	 Greenwood	 et	 al.	 [18]	 in	 their	
experimental	work	with	 rubber.	 Tabor	 inferred	
that	 the	 theory	 of	 rolling	 friction	does	 not	 hold	
good	 for	metals.	 Actually	 hysteresis	 loss	 factor,	
fraction	 of	 loss	 of	 maximum	 strain	 energy	
stored,	 is	 not	 generally	 a	 material	 constant.	
Hysteresis	 loss	 is	 common	phenomena	 for	both	
stress	 controlled	 (Constant	 load	 during	 cyclic	
loading)	 and	 strain	 controlled	 (Constant	
interference)	 fatigue.	 The	 respective	 strain	
amplitude	 and	 stress	 amplitude	 during	 stress	
controlled	 and	 strain	 controlled	 cyclic	 loading	
unloading	attains	a	stable	saturation	value	after	
an	 initial	 shakedown	 period.	 This	 saturation	
provides	a	stable	hysteresis	loop.	
	
Depending	 up	 on	 the	 nature	 of	 hysteresis	 loop,	
many	authors	identified	the	type	of	shakedowns	
in	 sliding	 contact,	 fretting	 contact,	 adhesive	
contact	 apart	 from	 the	 literatures	 discussed	
above.	In	the	recently	published	research	works,	
shakedown	has	been	simulated	in	elastic	plastic	
loading	 level	 with	 the	 use	 of	 finite	 element	
software,	 which	 can	 provide	 an	 accurate	 result	
of	interfacial	parameters	during	elastic	plastic	as	
well	as	in	plastic	contact.	Kadin	et	al.	[19]	found	
plastic	 shake	 down	 with	 kinematic	 hardening	
while	 elastic	 shake	 down	 with	 isotropic	
hardening	 for	 a	 cyclic	 loading	 of	 an	 elastic‐
plastic	adhesive	spherical	micro	contact	with	the	
use	of	 finite	element	software	ANSYS.	They	also	
inferred	that	the	plasticity	parameter,	a	function	
of	 yield	 strength,	 of	 the	 material	 plays	 an	
important	role	on	the	shakedown	behavior.	Song	
and	 Komvopoulos	 [20]	 performed	 the	 finite	
element	 simulation	 for	 the	 adhesive	 contact	 of	
an	 elastic	 plastic	 half	 space	with	 a	 rigid	 sphere	
using	 finite	 element	 software	 ABAQUS.	 They	
concluded	that	the	elastic	and	plastic	shakedown	
might	 occur	 even	 with	 elastic	 perfectly	 plastic	
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materials,	 depending	 on	 the	 plasticity	
parameter.	 They	 found	 elastic	 shakedown	 for	 a	
low	 plasticity	 parameter	 even	 under	 large	
maximum	 normal	 displacement	 while	 plastic	
shakedown	for	a	high	plasticity	parameter	under	
very	 small	 maximum	 normal	 displacement.	
Based	on	the	fundamental	of	Bowden	and	Tabor	
[14],	 Zolotarevskiy	 et	 al.	 [21]	 simulated	 elastic	
plastic	 spherical	 contact	 under	 cyclic	 tangential	
loading	 in	 pre‐sliding	 using	 ANSYS.	 They	 found	
that	 the	 friction‐displacement	 loops	of	 isotropic	
hardening	 materials	 exhibited	 elastic	
shakedown	 whereas	 materials	 with	 kinematic	
hardening	 shows	 plastic	 shakedown	 following	
the	 second	 cycle.	 The	 experimental	 results	 by	
Ovcharenko	 and	 Etsion	 [7]	 report	 elastic	
shakedown	 with	 2.5%	 hardening	 steel	 spheres	
and	 plastic	 shakedown	 with	 elastic	 perfectly	
plastic	 copper	 spheres	 for	 elastic	 plastic	
spherical	contact	fretting.		
	
The	type	of	hardening	model	and	the	intensity	of	
strain	 hardening	 greatly	 affect	 the	 interfacial	
parameters	 of	 a	 spherical	 contact	 during	
repeated	 normal	 loading	 unloading.	 It	 is	
pertinent	 to	 mention	 here	 that	 the	 changes	 in	
contact	 geometry	 are	 more	 pronounced	 in	
purely	normal	loading	rather	than	during	rolling	
or	sliding	contact.	Most	of	the	theoretical	studies	
on	 normal	 loading	 unloading	 of	 a	 spherical	
contact	 assumed	 frictionless	 contact	 with	
bilinear	 isotropic	 hardening	 or	 with	 the	 elastic	
perfectly	plastic	material.	Kral	et	al.	[22]	inferred	
that	the	effect	of	strain	hardening	on	the	contact	
parameters	 during	 loading	 unloading	 in	 the	
elastic	 plastic	 region	 is	 severe	 in	 comparison	
with	 the	 less	 significant	 effect	 of	 elastic	
properties	 of	 the	 material.	 They	 simulated	 the	
repeated	normal	indentation	of	an	elastic	plastic	
half	 space	 by	 a	 rigid	 sphere	 assuming	 a	
hardening	 power	 law,	 where	 the	 strain‐
hardening	 exponent	 was	 varied	 up	 to	 0.5,	 to	
study	 the	 effect	 of	 strain	 hardening.	 They	 also	
observed	that	the	hardening	materials	reached	a	
shakedown	in	respect	to	accumulation	of	plastic	
strain	 after	 three	 to	 four	 repeated	 normal	
loading	 unloading	 under	 perfect	 slip	 contact	
condition	 with	 isotropic	 hardening.	 	 Chatterjee	
and	 Sahoo	 [23]	 offered	 a	 model	 for	 loading	
unloading	of	a	deformable	sphere	against	a	rigid	
flat	to	study	the	effect	of	strain	hardening	under	
perfect	 slip	 contact	 condition	 assuming	 a	
hardening	 parameter	 which	 enabled	 them	 to	
study	 the	 effect	 of	 tangent	 modulus	 as	 high	 as	

33%	 of	 modulus	 of	 elasticity.	 They	 found	 that	
the	 higher	 strain	 hardening	 caters	 less	
resistance	to	 full	recovery	of	 the	original	shape.	
They	 noted	 that	 the	 load	 interference	 path	 for	
the	 second	 loading	 coincides	 with	 the	 first	
unloading	 path	 for	 the	 elastic	 perfectly	 plastic	
material	 as	 well	 as	 the	 materials	 with	 high	
tangent	 modulus	 under	 perfect	 slip	 contact	
condition	 with	 bilinear	 isotropic	 hardening.	
Thus	 the	 multiple	 loading	 unloading	 of	 a	
deformable	 sphere	 against	 a	 rigid	 flat	 under	
perfect	slip	contact	condition	is	reversible.	Then	
Chatterjee	 and	Sahoo	 [24]	 extended	 their	 study	
to	 investigate	 the	 effect	 of	 strain	 hardening	 in	
elastic	 plastic	 loading	 of	 a	 deformable	 sphere	
against	 a	 rigid	 flat	 under	 full	 stick	 contact	
condition.	 They	 also	 considered	 both	 the	
isotropic	 and	 kinematic	 hardening	 rules.	 The	
only	 finite	 element	 based	 multiple	 loading	
unloading	of	a	deformable	sphere	against	a	rigid	
flat	 under	 full	 stick	 contact	 condition	 with	
isotropic	and	kinematic	hardening	is	available	so	
far	 in	 the	 literature	 is	 the	 simulation	 generated	
by	 Zait	 et	 al.	 [25].	 They	 considered	 only	 2%	
bilinear	 hardening	 and	 their	 load	 displacement	
loop	 exhibited	 vanishing	 dissipated	 energy,	
which	 resulted	 in	 elastic	 shakedown	 for	 both	
isotropic	 and	 kinematic	 hardening.	 The	 same	
result	of	hysteresis	loop	with	both	the	hardening	
model	 provides	 a	 ground	 to	 study	 the	 effect	 of	
strain	 hardening	with	 varying	 tangent	modulus	
using	 the	 model	 of	 Zait	 et	 al.	 [25].	 Hence	 the	
main	 goal	 of	 the	present	 study	 is	 to	 investigate	
the	 effect	 of	 strain	 hardening	 on	 the	 hysteretic	
behavior	 of	 repeated	 normal	 loading	 unloading	
of	a	deformable	sphere	against	a	rigid	flat	under	
full	stick	contact	condition	considering	both	the	
isotropic	and	kinematic	hardening	models.	
	
	
2. MULTIPLE	NORMAL	LOADING‐UNLOADING	
MODEL		

	
The	deformable	sphere	with	a	rigid	flat	is	shown	
in	Fig.	1.	The	dashed	and	solid	lines	in	the	figure	
show	 the	 position	 of	 sphere	 and	 the	 rigid	 flat	
before	 and	 after	 the	 loading	 respectively.	 The	
interference	 (),	 the	 contact	 radius	 (a)	 of	 the	
deformable	sphere	of	radius	R,	correspond	to	an	
external	 load	 (P)	 applied	 to	 the	 contact	 are	
presented	 in	 the	 Fig.	 1.	 The	 expressions	 of	
critical	interference,	c,	which	initiates	the	yield	
inception	at	 first	 loading	and	the	corresponding	
critical	 load	 Pc	 under	 full	 stick	 condition	 are	
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given	 by	 Brizmer	 et	 al.	 [26],	which	 are	 used	 to	
normalized	the	contact	parameters.	
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Where	 256.1234.1 vC .	The	parameters	Y,	E,	
and	 	 are	 the	 virgin	 yield	 stress,	 the	 Young	
modulus,	 and	 Poisson’s	 ratio	 of	 the	 sphere	
material,	 respectively	and	R	 is	 the	 radius	of	 the	
sphere.	The	sphere	size	used	for	this	analysis	 is	
R	=	1	m.	The	material	properties	used	here	are	
Young’s	Modulus	( E )	=	70	GPa,	Poisson’s	Ratio	
( )	=	0.3	and	Yield	stress	(Y)	=	100	MPa.		
	

	
Fig.	1.	A	deformable	sphere	pressed	by	a	rigid	flat.	
	
Multiple	 normal	 loading	 unloading	 cycle	 consists	
two	stages.	First	 the	rigid	 flat	gradually	 loads	 the	
deformable	sphere	to	a	dimensionless	interference	
max/c,	 which	 results	 a	 dimensionless	 loading	
Pmax/Pc.	 The	 plastic	 zone	 evolves	 within	 contact	
region	 inside	the	sphere.	During	the	second	stage	
of	 unloading,	 the	 interference	 ()	 is	 gradually	
reduced.	At	the	completion	of	the	unloading,	under	
zero	contact	load	and	contact	area,	the	sphere	has	
locked‐in	residual	stresses	and	strain.		
	
The	 residual	 stresses	 and	 strains,	 which	 remain	
locked	in	the	sphere	results	in	a	deformed	unloaded	
sphere	and	the	amount	depends	on	the	hardening	
ratio	 (Et/E)	 [27].	 Therefore	 the	 original	 un‐
deformed	spherical	geometry	is	not	fully	recovered.	
The	 normal	 loading	 unloading	 cycle,	 to	 the	 same	
max/c,	 is	 performed	 seven	 to	 ten	 times	
considering	both	isotropic	and	kinematic	hardening	
models	 to	 study	 the	 effect	 of	 strain	 hardening	 as	
well	 as	 hardening	 rule	 on	 the	 hysteretic	 behavior	
under	full	stick	contact	condition.	
	

3. THE	FINITE	ELEMENT	MODEL	
 
The	 commercial	 finite	 element	 software	 ANSYS	
11.0	 is	 used	 to	 get	 the	 response	of	 the	 repeated	
normal	 loading	 unloading	 of	 the	 elastic	 plastic	
sphere	against	a	rigid	flat.	The	sphere	is	modeled	
as	 quarter	 of	 a	 circle	 due	 to	 the	 advantage	 of	
simulation	 of	 axisymmetric	 problems.	 A	 line	
models	 the	 rigid	 flat.	 Six	 node	 triangular	
axisymmetric	 elements	 (plane183)	 are	 used	 in	
the	 present	 model.	 Plane183	 has	 plasticity,	
hyperelasticity,	 creep,	 stress	 stiffening,	 large	
deflection,	and	large	strain	capabilities	along	with	
the	 capability	 for	 simulating	 deformations	 of	
nearly	incompressible	elastoplastic	materials,	and	
fully	 incompressible	 hyperelastic	materials	 [28].	
The	mesh	 consists	 of	maximum	 18653	 six	 node	
triangular	 axisymmetric	 elements	 (plane183)	
comprising	 37731	 nodes.	 The	 resulting	 ANSYS	
mesh	 is	presented	 in	Fig.	2.	The	mesh	density	at	
the	 bottom	 of	 the	 sphere	 is	 coarsest	 one	 and	 is	
made	gradually	finer	towards	the	sphere	summit.	
The	 finest	mesh	 density	 near	 the	 contact	 region	
simultaneously	 allows	 the	 sphere’s	 curvature	 to	
be	 captured	 and	 accurately	 simulated	 during	
deformation	 with	 a	 reduction	 in	 computation	
time.	Window	 2	 of	 Fig.	 2	 presents	 the	 enlarged	
view	of	the	finest	mesh	density	at	sphere	summit.	
The	 sphere	 surface	 is	modeled	with	 the	 contact	
elements	CONTA172	and	the	rigid	flat	is	modeled	
by	 a	 single,	 non‐flexible	 two‐node	 target	 surface	
element	TARGE169.	The	nodes	 lying	on	 the	 axis	
of	 symmetry	of	 the	hemisphere	are	 restricted	 to	
move	 only	 in	 the	 radial	 direction.	 Likewise	 the	
nodes	 in	the	bottom	of	 the	hemisphere	are	 fixed	
in	both	the	axial	and	radial	direction.	For	full	stick	
contact	 condition,	 infinite	 friction	 condition	 is	
adopted.	 Both	 the	 bilinear	 kinematic	 hardening	
(BKIN)	 and	 bilinear	 isotropic	 hardening	 (BISO)	
options	 are	 considered	 to	 study	 the	 effect	 of	
hardening	rule	on	 the	hysteretic	 loop	during	 the	
repeated	 normal	 loading	 unloading.	 The	 rate	
independent	plasticity	algorithm	incorporates	the	
von	 Mises	 criterion.	 The	 mesh	 density	 is	
gradually	 doubled	 until	 the	 contact	 force	 and	
contact	area	differed	by	less	than	1%	between	the	
iterations.	 In	 addition	 to	mesh	 convergence,	 the	
model	 also	 compares	well	with	 the	Hertz	 elastic	
solution	 at	 interferences	 below	 the	 critical	
interference	 for	 perfect	 slip	 contact	 condition.	
This	 work	 uses	 Lagrangian	 multiplier	 method.	
The	tolerance	of	current	work	is	set	to	1%	of	the	
element	width.	
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Fig.	2.	Finite	element	mesh	of	a	sphere	generated	by	ANSYS.	
	
Engineering	stress‐strain	curves	are	used	within	
elastic	 limit.	 The	 dimension	 of	 the	 specimen	
changes	 substantially	 in	 the	 region	 of	 plastic	
deformation.	 The	 increment	 of	 strain	 in	
conjunction	 with	 true	 stress	 can	 be	 termed	 as	
strain	 hardening.	 Strain	 hardening	 causes	 an	
increase	 in	 strength	 and	 hardness	 of	 the	metal.	
Strain	 hardening	 is	 expressed	 in	 terms	 of	
tangent	modulus	 (Et),	which	 is	 the	 slope	 of	 the	
stress‐strain	curve.	Below	the	proportional	limit,	
the	tangent	modulus	 is	 the	same	as	the	Young’s	
modulus	 (E).	 Above	 the	 proportional	 limit,	 the	
tangent	 modulus	 varies	 with	 the	 strain.	 The	
tangent	 modulus	 is	 useful	 in	 describing	 the	
behaviour	 of	materials	 that	 have	 been	 stressed	
beyond	 the	 elastic	 region.	 In	 elastic	 perfectly	
plastic	cases,	the	tangent	modulus	becomes	zero.	
Very	 few	 materials	 exhibit	 elastic	 perfectly	
plastic	 behaviour,	 generally	 all	 the	 materials	
follow	 the	 multi‐linear	 behaviour	 with	 some	
tangent	 modulus.	 This	 multi‐linear	 behaviour	
can	 be	 modelled	 as	 bilinear	 behaviour	 for	
analysis	 purpose	 in	 elastic‐plastic	 cases.	 In	 this	

analysis	 a	 bilinear	material	 property,	 as	 shown	
in	Fig.	3,	is	provided	for	the	deformable	sphere.	
	

 
Fig.	 3.	 Stress‐strain	 diagram	 for	 a	 material	 with	
bilinear	properties.	
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4. RESULTS	AND	DISCUSSIONS	
	
It	 is	 already	 stated	 that	 the	 aim	 of	 the	 present	
study	 is	 to	 investigate	 the	 influence	 of	 strain	
hardening	 and	 the	 hardening	 model	 on	 the	
hysteretic	 loop.	 Shankar	 and	 Mayuram	 [29]	
mentioned	 that	 the	 tangent	 modulus	 for	 the	
most	 practical	 materials	 is	 less	 than	 0.05	 E,	
whereas	 Kadin	 et	 al.	 [27]	 found	 the	 tangent	
modulus	for	most	practical	materials	below	0.02	
E.	 However	 both	 the	 authors	 used	 tangent	
modulus	 up	 to	 0.1E	 for	 analytical	 purpose.	 On	
the	 other	 hand,	 Ovcharenko	 et	 al.	 [30]	 used	
stainless	 steel	 specimen	 with	 tangent	 modulus	
of	 0.26	 E	 (Fig.	 6(b))	 in	 their	 in‐situ	
investigation).	 It	 is	 also	 available	 in	 literature	
that	 structural	 steel,	 aluminum	 alloys	 have	
significant	amount	of	strain	hardening.	Zait	et	al.	
[25]	 found	elastic	 shakedown	with	 two	percent	
kinematic	hardening.	Thus	first	multiple	normal	
loading‐unloading	 is	 simulated	 with	 elastic	
perfectly	 plastic	material	 and	 the	 elastic	 plastic	
sphere	with	2.5	and	5	percent	bilinear	hardening	
using	both	isotropic	and	kinematic	hardening.	
	
Figure	4	presents	dimensionless	normal	contact	
load	 as	 a	 function	 of	 dimensionless	 normal	
interference	 during	 ten	 multiple	 loading‐
unloading	 cycles	 for	 maximum	 dimensionless	
interference,	max=100.		
	

 

Fig.	 4.	 Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	 interference	 hysteretic	 loop	 for	
maximum	loading,	*max=100.	
	
The	 sphere	 material	 is	 considered	 as	 elastic	
perfectly	 plastic.	 Interference	 controlled	
multiple	 loading	 unloading	 is	 adopted.	 It	 is	
found	 that	 the	 response	 of	 the	 elastic	 perfectly	

plastic	 materials	 during	 multiple	 loading‐
unloading	with	both	the	isotropic	and	kinematic	
hardening	 is	 identical.	 The	 area	 bounded	 by	
dimensionless	 interference	 and	 dimensionless	
contact	load	after	first	unloading	under	full	stick	
contact	 condition,	 the	 quantity	 of	 dissipated	
energy,	clearly	indicates	elastic	shakedown.		
	
Figure	 5	 shows	 the	 load	 interference	hysteretic	
loop	during	ten	repeated	loading	unloading.	The	
maximum	 dimensionless	 interference	 for	
loading	is	*max=100,	with	tangent	modulus,	Et=	
0.025E	using	kinematic	hardening.		
	

 
Fig.	 5.	 Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	interference	hysteretic	loop	for	maximum	
loading,	*max=100	with	kinematic	hardening.	
	
The	elastic	shakedown	with	vanishing	dissipated	
energy	 even	 with	 kinematic	 hardening	 is	
prominent	 from	 the	 figure.	 Zait	 et	 al.	 [25]	
furnished	 the	 results	 (Fig.	 4)	 with	 maximum	
dimensionless	interference	of	60	using	kinematic	
hardening.	 They	 have	 shown	 that	 with	 small	
tangent	 modulus	 the	 materials	 result	 in	 elastic	
shakedown	even	under	the	influence	of	kinematic	
hardening.	 The	 present	 simulated	 results	 are	 in	
good	 agreement	 with	 the	 findings	 of	 Zait	 et	 al.	
[25].	The	right	top	figure	(a)	here,	enlarged	view	
of	contact	load	after	each	loading	cycle,	shows	the	
decrease	 of	 contact	 load	 during	 ten	 repeated	
loading	 cycles,	 using	 2.5%	 bilinear	 kinematic	
hardening,	under	full	stick	contact	condition.	The	
bottom	right	 figure	(b),	detailed	view	of	residual	
interferences	 after	 each	 unloading	 cycles,	
presents	 the	 increase	 of	 residual	 interferences	
during	 ten	 repeated	 loading	 unloading	 cycles	
with	 2.5%	 bilinear	 kinematic	 hardening	 under	
full	stick	contact	condition.	
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Figure	 6	 represents	 the	 load	 interference	
hysteretic	 loop	 during	 ten	 repeated	 loading‐
unloading	 cycles	 under	 full	 stick	 contact	
condition.	 The	 simulation	 used	 2.5%	 bilinear	
isotropic	 hardening	 for	 the	 maximum	
dimensionless	 loading	 up	 to	 *max=100.	 Here	
also	the	elastic	plastic	deformable	sphere	yields	
in	 elastic	 shakedown.	 The	 right	 top	 figure	 (a)	
indicates	 the	decrease	of	 dimensionless	 contact	
load	 during	 ten	 repeated	 loading	 cycles.	 The	
bottom	right	 figure	 (b)	presents	 the	 increase	of	
residual	 interferences	 after	 each	 unloading	
cycles	 during	 ten	 loading	 unloading	 cycles.	
Comparing	 the	 results	 of	 Figs.	 5	 and	 6,	 it	 is	
observed	that	the	decrease	of	contact	 load	after	
tenth	 loading	 cycles	 and	 increase	 of	 residual	
interference	 after	 ten	 loading	 unloading	 cycles	
with	both	hardening	rule	is	almost	identical	with	
vanishing	dissipated	energy.	
	

 

Fig.	 6.	 Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	 interference	 hysteretic	 loop	 for	
maximum	loading,	*max=100	with	isotropic	hardening.	
	
Figure	 7(a)	 presents	 the	 hysteretic	 loop	 of	 the	
dimensionless	normal	contact	 load	with	respect	
to	 dimensionless	 interference	 during	 ten	
repeated	 loading	 unloading	 cycles	 under	 full	
stick	 contact	 condition	 with	 5%	 bilinear	
isotropic	 hardening.	 The	 maximum	
dimensionless	 interference	 of	 loading	 is	
*max=100.	 The	 figure	 reveals	 the	 elastic	
shakedown	with	vanishing	dissipated	energy	as	
expected	 for	 isotropic	hardening.	 Figure	7(b)	 is	
the	 plot	 of	 the	 hysteretic	 loop	 under	 full	 stick	
contact	 condition	 with	 5%	 bilinear	 kinematic	
hardening.	 The	 maximum	 dimensionless	
interference	 of	 loading	 during	 ten	 repeated	
loading	unloading	cycles	is	*max=100.		

	
(a)	

	
(b)	

Fig.	 7.	 Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	 interference	 hysteretic	 loop	 for	
maximum	 loading,	 *max=100	 with	 (a)	 isotropic	
hardening	(b)	kinematic	hardening.	
	
Here	 also	 the	 figure	 indicates	 the	 elastic	
shakedown	even	with	kinematic	hardening.	Zait	
et	 al.	 [25]	 also	 observed	 that	 under	 full	 stick	
contact	 condition	 the	 deformable	 sphere	
resulted	 in	 elastic	 shakedown	with	 2%	bilinear	
kinematic	 hardening	 for	 normal	 repeated	
loading.	 They	 attributed	 the	 similar	 shakedown	
behavior	 with	 both	 hardening	 models	 to	 the	
small	variation	of	the	von	Mises	stress.	
	
As	can	be	seen	from	Figs.	4	to	7,	the	deformable	
sphere	 shows	 elastic	 shakedown	with	 both	 the	
hardening	 models	 for	 repeated	 normal	 loading	
unloading	under	full	stick	contact	condition.	The	
results	 show	 excellent	 agreement	 with	 the	
results	 of	 Zait	 et	 al.	 [25].	 Zait	 et	 al.	 did	 not	
consider	 the	 effect	 of	 high	 tangent	modulus	 on	
the	 multiple	 normal	 loading‐unloading	 of	 a	
deformable	sphere	against	a	rigid	flat.	Kral	et	al.	
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[22]	 used	 strain‐hardening	 exponent	 to	 study	
the	effect	of	strain	hardening	on	the	deformation	
of	 an	 elastic	 plastic	 half	 space	 against	 a	 rigid	
sphere	during	repeated	loading	unloading.	They	
reported	 that	 the	 hardening	 materials	 (strain	
hardening	 exponent	 up	 to	 0.5)	 reached	 to	 a	
shakedown	 in	 light	 of	 accumulation	 of	 plastic	
strain	 after	 three	 to	 four	 repeated	 normal	
loading	 unloading	 cycles	 under	 perfect	 slip	
contact	 condition	with	 isotropic	hardening.	The	
tangent	 modulus	 of	 stainless	 steel,	 structural	
steel,	aluminum	alloys	etc.	are	15%	or	above	the	
modulus	of	elasticity	of	the	respective	materials.	
Thus	 in	 the	 next	 part	 of	 present	 analysis,	 the	
tangent	 modulus	 (Et)	 is	 varied	 according	 to	 a	
hardening	 parameter	 (H).	 The	 hardening	
parameter	is	defined	as:	

t

t

EE

E
H


 .	

The	 present	 analysis	 considered	 four	 different	
values	 of	 H,	 covering	 wide	 range	 of	 tangent	
modulus	to	depict	the	effect	of	strain	hardening	
in	 single	 asperity	 multiple	 loading	 unloading	
contact	 analysis	 with	 other	material	 properties	
being	 constant.	 The	 values	 of	 H	 used	 in	 this	
analysis	are	within	range	 5.00  H 	as	most	of	
the	 practical	 materials	 falls	 in	 this	 range	 [31].	
The	 value	 of	 H equals	 to	 zero	 indicates	 elastic	
perfectly	 plastic	material	 behavior,	 which	 is	 an	
idealized	 material	 behavior.	 The	 hardening	
parameters	 used	 for	 this	 analysis	 and	 their	
corresponding	Et	values	are	shown	in	Table	1.	
	
Table	1.	Different	H	and	Et	values	used	for	the	study	
of	strain	hardening	effect.	

H	 Et	in	%E	 Et	(GPa)	

0	 0.0	 0.0	

0.1	 9.0	 6.3	

0.3	 23.0	 16.1	

0.5	 33.0	 23.1	

	
Figure	 8(a)	 is	 the	 plot	 of	 hysteretic	 loop	 of	
dimensionless	 normal	 contact	 load	 versus	
dimensionless	 interference	 under	 full	 stick	
contact	condition	for	the	elastic	perfectly	plastic	
material.	 The	 maximum	 dimensionless	
interference	 of	 loading	 in	 this	 interference	
controlled	repeated	normal	loading	unloading	is	
*max=50.	 The	 figure	 indicates	 vanishing	
dissipated	 energy,	 which	 resulted	 in	 elastic	

shakedown.	 Figure	 8(b)	 shows	 the	 resulted	
hysteretic	 loop	 of	 the	 dimensionless	 normal	
contact	 load	 versus	 dimensionless	 interference	
under	 full	 stick	contact	 condition	 for	 the	elastic	
perfectly	 plastic	 material.	 Here	 the	 maximum	
dimensionless	 interference	 of	 loading	 in	 the	
interference	 controlled	 repeated	 loading	
unloading	 is	200.	 It	 is	 clear	 from	Figs.	 8(a)	 and	
8(b)	that	the	increase	of	the	loading	interference	
exhibits	 no	 effect	 on	 the	 shakedown	 behaviour	
as	 hysteretic	 loop	 in	 both	 the	 figure	 indicate	
vanishing	dissipated	energy. 
	

 
(a)		

 
(b)	

Fig.	 8.	 Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	 interference	 hysteretic	 loop	 for	
maximum	loading,	(a)	*max=50	(b)	*max=200.	
	
Figure	9	presents	the	dimensionless	contact	load	
as	 a	 function	 of	 dimensionless	 interference	
during	 ten	 normal	 loading	 unloading	 cycles	
under	full	stick	contact	condition	for	the	sphere	
material	with	 hardening	 parameter,	 H=0.1.	 The	
hysteretic	 loop	 considering	 bilinear	 isotropic	
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hardening	 with	 tangent	 modulus	 (Et)	 equals	 to	
9%	 of	 elastic	 modulus	 clearly	 converged	 into	
elastic	 shakedown.	 The	 right	 top	 figure	 (a)	
shows	 the	 slight	 decrease	 of	 dimensionless	
contact	 load	 in	 interference	controlled	repeated	
normal	 loading	 with	 maximum	 interference	 of	
loading	 equals	 to	 *max=50	 while	 bottom	 right	
figure	 (b)	 presents	 the	 increase	 of	 residual	
interferences	after	each	unloading	cycles.	
	

 
Fig.	 9.	 Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	 interference	 hysteretic	 loop	 for	
maximum	loading,	*max=50.	
	
Hysteretic	 loop	 of	 repeated	 normal	 loading	
unloading	 for	 the	 deformable	 sphere	 with	
hardening	 parameter,	 H=0.1	 considering	
kinematic	 hardening	 under	 full	 stick	 contact	
condition	 is	 plotted	 in	 Fig.	 10(a).	 The	 figure	
reveals	 more	 dissipated	 energy	 with	 kinematic	
hardening	 compared	 to	 the	 dissipated	 energy	
with	isotropic	hardening.		
	
The	 top	 Fig.	 of	 10	 (b)	 shows	 the	 evolution	 of	
contact	load	after	each	loading	cycles	during	ten	
repeated	 loading	 unloading	 cycles	with	 tangent	
modulus,	Et=0.09E.	The	maximum	dimensionless	
interference	of	loading	is	50.		
	
The	 bottom	 Fig.	 of	 10(b)	 exhibits	 the	 residual	
interference	 after	 each	 unloading	 cycles.	
Comparing	 the	 results	 with	 two	 different	
hardening	 models,	 it	 is	 found	 that	 the	 contact	
load	 at	 the	 end	 of	 maximum	 dimensionless	
interference	with	kinematic	hardening	is	greater	
than	 the	 contact	 load	with	 isotropic	 hardening.	
Similar	 behaviour	 is	 also	 observed	 elsewhere	
[24].	 On	 the	 other	 hand,	 the	 residual	
interference	with	 kinematic	 hardening	 is	 lesser	
than	that	of	with	isotropic	hardening.	

 
(a)	

	
(b)	

Fig. 10. (a) Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	 interference	 hysteretic	 loop	 for	
maximum	 loading,	*max=50	with	 kinematic	 hardening	
(b)	 Decrease	 of	 contact	 load	 and	 increase	 of	 residual	
interferences	during	ten	loading	unloading	cycles.	
	
The	 dimensionless	 normal	 contact	 load	 as	 a	
function	of	the	dimensionless	normal	interference	is	
presented	 in	 Fig.	 11(a).	 The	 hysteretic	 loop,	 area	
bounded	by	unloaded	cycle	and	loading	cycle	after	
first	 loading,	 with	 maximum	 dimensionless	
interference	 of	 200	 shows	 that	 the	 value	 of	 the	
bounded	 area	 subsequently	 decreasing	 in	 nature.	
Thus	 the	 repeated	 ten	 loading	 unloading	 cycles	
under	 full	 stick	 contact	 condition	 with	 isotropic	
hardening	 converges	 into	 elastic	 shakedown	 even	
with	 large	 interference.	 The	 area	 of	 the	 hysteretic	
loop	 between	 the	 unloading	 curve	 and	 the	
subsequent	loading	curve	of	dimensionless	contact	
load	and	dimensionless	interference	under	full	stick	
contact	condition	presents	the	amount	of	dissipated	
energy.	 The	 Fig.	 11(b)	 indicates	 a	 constant	
dissipation	 of	 energy	 after	 first	 unloading	 cycle.	
Thus	 it	 is	 evident	 that	 the	 material	 with	 high	
tangent	modulus	and	kinematic	hardening	resulted	
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in	plastic	shakedown.	 It	 can	also	be	seen	 from	the	
figure	that	the	area	of	the	hysteretic	loop	increases	
with	 the	 increase	 in	 maximum	 dimensionless	
interference	 of	 loading	 in	 the	 interference	
controlled	repeated	loading	unloading.	
		

 
(a)	

 
(b)	

Fig.	 11.	 Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	 interference	 hysteretic	 loop	 for	
maximum	 loading,*max=200	 with	 (a)	 isotropic	
hardening	(b)	kinematic	hardening.	
	
Figure	 12(a)	 to	 12(c)	 presents	 the	 dimensionless	
elastic	 plastic	 load	 displacement	 results	 during	
repeated	 normal	 loading	 unloading	 process	 in	
terms	of	P*	vs.	*	under	full	stick	contact	condition.	
The	 simulations	 have	 done	 with	 the	 hardening	
parameter	 of	 the	 sphere	 material,	 H=0.3	 (tangent	
modulus,	Et=0.23E)	using	 isotropic	hardening.	The	
maximum	 dimensionless	 interferences	 of	 loading	
for	Figs.	12(a),	12(b)	and	12(c)	are	50,	100	and	200	
respectively.	 We	 have	 considered	 ten	 repeated	
loading	unloading	cycles	 for	the	maximum	loading	
interference	 of	 50	 and	 100	 while	 seven	 loading	
unloading	cycles	for	the	loading	interference	of	200.	
The	hysteretic	loop,	the	area	between	the	unloading	

curve	and	loading	curve	on	and	from	first	unloading	
cycle	 of	 load	 displacement	 figure,	 shows	 no	
remarkable	 dissipation	 of	 energy.	 The	 vanishing	
nature	 of	 dissipated	 energy	 resulted	 in	 elastic	
shakedown.	These	 findings	are	 in	good	agreement	
with	Kadin	et	al.	[19]	where	the	authors	concluded	
that	 the	 elastic	 shakedown	 is	 associated	 with	
isotropic	hardening.	
	

 
(a)	

 
(b)	

 
(c)	

Fig.	 12.	 Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	interference	hysteretic	loop	for	maximum	
loading,	(a)	*max=50,	(b)	*max=100,	(c)	*max=200.	
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The	 dimensionless	 normal	 contact	 loads	 as	 a	
function	 of	 normal	 dimensionless	 interferences	
under	 full	 stick	 contact	 condition	 are	 plotted	 in	
Fig.	 13	 (a)	 to	 13(c).	 The	 hardening	 parameter	
chosen	 for	 these	 simulations	 is,	 H=0.3	 (tangent	
modulus,	Et=0.23E)	using	kinematic	hardening.	It	
reveals	from	the	figures	that	the	unloading	curves	
and	the	loading	curves	are	identical	on	and	from	
second	 cycle	 exhibiting	 constant	 dimensionless	
energy	 dissipation	 (the	 area	 of	 the	 hysteretic	
loop)	 during	 each	 repeated	 cycle.	 Here	 also	 we	
have	used	 ten	 repeated	 cycles	 for	 the	maximum	
interference	 loading	 of	 50	 and	 100,	 whereas	
seven	 repeated	 cycles	 for	 the	 maximum	
interference	 loading	 of	 200.	 The	 constant	
dimensionless	energy	dissipation	indicates	plastic	
shakedown	 as	 would	 be	 expected	 for	 kinematic	
hardening.	 It	 is	 also	observed	 from	Fig.	 13(a)	 to	
13(c)	 that	 the	 dissipated	 energy	 increases	 with	
the	increase	in	maximum	interference	of	loading.	
	
Figure	 14,	 the	 details	 of	 Fig.	 13(c),	 presents	 the	
evolution	 of	 dimensionless	 contact	 load	 and	
dimensionless	 residual	 interferences	 during	
repeated	 loading	 unloading.	 It	 is	 found	 from	 the	
figure	 (a)	 that	 the	 dimensionless	 contact	 load	 is	
almost	 identical	 from	 second	 loading	 cycles	 and	
figure	 (b)	 indicates	 that	 the	 increase	 in	
dimensionless	 residual	 interference	 is	 also	
negligible	 after	 repeated	 unloading	 cycles.	
Comparison	of	 two	hardening	model	 also	 reveals	
that	 the	 dimensionless	 contact	 load	 for	 the	 same	
dimensionless	interference	is	larger	with	isotropic	
hardening	 than	 that	of	with	kinematic	hardening.	
However	 the	 effect	 of	 hardening	 model	 is	 more	
pronounced	during	unloading,	 the	materials	with	
kinematic	 hardening	 offer	 less	 resistance	 to	
recovery	 of	 original	 shape	 compared	 to	 the	
materials	associated	with	isotropic	hardening.	
	

 
(a)	

 
(b)	

 
(c)	

Fig.	 13.	 Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	interference	hysteretic	loop	for	maximum	
loading,	(a)	*max=50,	(b)	*max=100,	(c)	*max=200.	
 

 
Fig.	 14.	 Evolution	 of	 contact	 load	 and	 residual	
interferences	 during	 repeated	 loading	 unloading	 of	
plastic	shakedown	process.	
	
Figure	 15(a)	 to	 15(c)	 presented	 the	 effect	 of	
maximum	dimensionless	interference	of	loading	
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in	 interference	 controlled	 repeated	 loading	
unloading	 on	 the	 evolution	 of	 dimensionless	
normal	 contact	 load	 versus	 dimensionless	
normal	 interference	 for	 repeated	 loading	
unloading	 cycles.	 Ten	 repeated	 loading	
unloading	 cycles	 are	 considered	 when	 the	
maximum	 dimensionless	 interferences	 are	 50	
and	 100.	 Seven	 repeated	 loading	 unloading	
cycles	 are	 simulated	 for	 maximum	
dimensionless	 interference	 loading	 of	 200.	 The	
load	 displacement	 loop	 of	 the	 sphere	 material	
with	 hardening	 parameter,	 H=0.5	 (tangent	
modulus,	 Et=0.33E)	 using	 isotropic	 hardening	
exhibiting	convergence	 to	an	elastic	shakedown	
irrespective	 of	 the	 extent	 of	 maximum	
interference	 of	 loading.	 Thus	 the	 shakedown	
behavior	 in	 case	 of	 normal	 repeated	 loading	
unloading	 depends	 predominantly	 on	 the	
hardening	 rule	 and	 tangent	 modulus	 of	 the	
deformable	 sphere	 rather	 than	 the	 extent	 of	
loading	 in	 the	 interference	 controlled	 repeated	
loading	unloading.	
	

 
(a)	

 
(b)	

 
(c)	

Fig.	 15.	 Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	interference	hysteretic	loop	for	maximum	
loading,	(a)	*max=50,	(b)	*max=100,	(c)	*max=200.	
	
The	 dimensionless	 normal	 contact	 load	 versus	
dimensionless	 normal	 interference	 in	 repeated	
loading	unloading	for	a	deformable	sphere	with	a	
rigid	 flat	under	 full	 stick	 contact	 condition	using	
kinematic	 hardening	 are	 shown	 in	 Fig.	 16(a)	 to	
16(c).	The	maximum	dimensionless	interferences	
of	 loading	 for	 the	 sphere	 material	 with	 tangent	
modulus,	Et=0.33E	(Hardening	parameter,	H=0.5)	
are	 50,100	 and	 200	 respectively.	 Ten	 repeated	
loading	 unloading	 cycles	 are	 used	 for	 the	
maximum	dimensionless	loading	interferences	of	
50	and	100	although	seven	such	repeated	cycles	
are	used	foe	the	maximum	loading	interference	of	
200.	 It	 reveals	 from	 the	 figures	 that	 the	 load‐
displacement	hysteretic	loops,	irrespective	of	the	
maximum	dimensionless	interferences	of	loading,	
exhibited	 constant	 dissipated	 energy	 indicating	
plastic	shakedown.		
	
From	 the	 several	 simulations	 it	was	 found	 that	 in	
order	to	enable	a	common	basis	for	the	comparison	
of	the	dimensionless	dissipated	energy,	the	energy	
transferred	 to	 the	 deformable	 sphere	 during	 first	
loading	 is	 to	be	kept	constant.	Thus	the	dissipated	
energy	is	normalized	with	the	product	P	of	elastic	
perfectly	plastic	materials.	The	dissipated	energy	is	
calculated	 by	 numerically	 integrating	 the	 area	
enclosed	 within	 the	 hysteretic	 load‐displacement	
loop.	The	effects	of	 strain	hardening	 (Et/E)	on	 the	
constant	dissipated	energy	at	plastic	shakedown	are	
shown	 for	 maximum	 dimensionless	 loading	
interference	of	50,	100	and	200	in	Figs.	17(a),	17(b)	
and	17(c)	respectively.	As	can	be	observed	from	the	
figures,	 the	 constant	 dissipated	 energy	 during	
plastic	 shakedown	 increases	 with	 the	 increase	 in	
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the	 tangent	 modulus	 of	 the	 deformable	 sphere.	
Comparing	 the	 results	 for	 the	 different	maximum	
dimensionless	 interference	of	 loading,	 it	 is	evident	
that	 the	constant	dissipation	energy	during	plastic	
shakedown	 is	 increasing	 with	 the	 increase	 in	
maximum	dimensionless	interference	of	loading	for	
a	 specific	 tangent	modulus	of	 the	 sphere	material.	
Zolotarevskiy	 et	 al.	 [21]	 found	 that	 the	 constant	
dissipated	 energy	 during	 plastic	 shakedown	
increases	 with	 the	 increase	 in	 dimensionless	
normal	 load	 while	 simulating	 under	 tangential	
loading	 in	 pre‐sliding	 under	 full	 stick	 contact	
condition.	Our	results	 for	repeated	normal	 loading	
unloading	 under	 full	 stick	 contact	 condition	
correlate	 well	 with	 Zolotarevskiy	 et	 al.	 [21]	 in	
regards	 to	 the	 effect	 of	 normal	 load	 on	 constant	
dissipated	energy	during	plastic	shakedown.	
	

 
(a)	

 
(b)	

 
(c)	

Fig.	 16.	 Dimensionless	 normal	 contact	 load	 vs.	
dimensionless	 interference	 hysteretic	 loop	 for	
maximum	 loading,	 (a)	 *max=50,	 (b)	 *max=100,	 (c)	
*max=200.	
	

 
(a)	

 
(b)	
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(c)	

Fig.	17.	 Dimensionless	 dissipated	 energy	 vs.	Et/E	 at	
(a)	*max=50,	(b)	*max=100,	(c)	*max=200.	
	
The	 present	 study	 considers	 the	 shakedown	
behavior	in	full	stick	contact	condition	for	varying	
tangent	 modulus.	 However,	 there	 are	 other	
material	 parameters	 like	 Poisson’s	 ratio,	 work	
hardening,	 ratio	 of	 elastic	 modulus	 to	 yield	
strength	etc.	that	need	to	be	considered	[32].	Also	
other	contact	conditions	 like	pure	slip	and	stick‐
slip	need	to	be	considered	 in	 future	studies.	The	
present	 study	 assumes	 non‐adhesive	 contact	
situation	 but	 a	 realistic	 contact	 analysis	 should	
include	 the	 presence	 of	 adhesion	 [33].	 Future	
work	will	consider	such	contact	situations.	
	
	
5. CONCLUSIONS	
	
The	elastic	plastic	spherical	contact	subjected	to	
repeated	 normal	 loading	 unloading	 under	 full	
stick	 contact	 condition	 with	 varying	 tangent	
modulus	 was	 analyzed	 using	 commercial	 finite	
element	software	ANSYS.	Both	the	isotropic	and	
kinematic	 hardening	 rules	 were	 studied.	 The	
elastic	 shakedown	 for	 isotropic	 hardening	 and	
plastic	shakedown	 for	kinematic	hardening	was	
predicted	 for	 most	 of	 the	 published	 results	 of	
sliding,	 fretting	 and	 rolling	 contact	 repetitive	
loading.	Recently	published	finite	element	based	
multiple	 normal	 loading	 unloading	 of	 a	
deformable	sphere	against	a	rigid	flat	converged	
into	 elastic	 shakedown	 with	 both	 2%	 bilinear	
isotropic	 and	kinematic	 hardening.	The	present	
results	 within	 5%	 hardening	 were	 found	
qualitatively	 similar	 elastic	 shakedown	 with	
both	 isotropic	 and	 kinematic	 hardening	 as	
inferred	 in	 recently	 published	 finite	 element	
based	 results.	 The	 sphere	 material	 with	 high	
tangent	 modulus	 (from	 9%	 to	 33%	 of	 elastic	

modulus),	 as	 observed	 in	 stainless	 steel,	
structural	 steel	 and	 different	 aluminum	 alloys,	
exhibited	 constant	 dissipated	 energy	 (plastic	
shakedown)	following	the	second	loading	cycles	
with	 kinematic	 hardening	 and	 converges	 into	
elastic	 shakedown	 with	 isotropic	 hardening.	 It	
was	 also	 found	 that	 elastic	 plastic	 spherical	
contact	with	isotropic	hardening	produced	more	
dimensionless	 contact	 load	 than	 the	 elastic	
plastic	 spherical	 contact	 with	 kinematic	
hardening	particularly	for	high	tangent	modulus.	
The	 residual	 interferences	 with	 kinematic	
hardening	 after	 complete	 unloading	 is	 less	
compared	 to	 the	 residual	 interferences	
simulated	 with	 isotropic	 hardening,	 which,	 in	
turn,	offers	less	resistance	to	full	recovery	of	the	
original	 shape	 with	 kinematic	 hardening.	 The	
results	 from	 present	 simulation	 also	 revealed	
that	 the	 higher	 dimensionless	 interference	 of	
loading	and	higher	tangent	modulus	increase	the	
dimensionless	dissipated	energy.		
	
	
NOMENCLATURE	
	
a					 Contact	area	radius	
E					 Modulus	of	elasticity	of	the	sphere	
Y					 Yield	Strength	of	the	sphere	material	
A					 Real	contact	area	
R					 Radius	of	the	sphere	
P					 Contact	load	
					 Interference		
					 Poisson’s	ratio	of	sphere	
p					 Mean	contact	pressure	
Et				 Tangent	modulus	of	the	sphere	
P*				 Dimensionless	contact	load,	P/Pc	in	stick	

contact	
A*				 Dimensionless	contact	area,	A/Ac	in	stick	

contact	
*				 Dimensionless	 interference,/c	 in	stick	

contact	
	
Subscripts	
	
c					 critical	values	
res			 Residual	values	following	unloading	
max			 Maximum	 values	 during	 loading‐

unloading	process		
	
Superscripts	
	
*					 Dimensionless			
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