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	 A	B	S	T	R	A	C	T	

A	generalized	 form	of	Reynolds	equation	 for	two	symmetrical	surfaces	 is	
taken	by	considering	velocity‐slip	at	the	bearing	surfaces.	This	equation	is	
applied	to	study	the	effects	of	velocity‐slip	and	viscosity	variation	for	the	
lubrication	of	squeeze	 films	between	 two	circular	plates.	Expressions	 for	
the	 load	 capacity	 and	 squeezing	 time	 obtained	 are	 also	 studied	
theoretically	 for	 various	 parameters.	 The	 load	 capacity	 and	 squeezing	
time	 decreases	 due	 to	 slip.	 They	 increase	 due	 to	 the	 presence	 of	 high	
viscous	layer	near	the	surface	and	decrease	due	to	low	viscous	layer.	
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1. INTRODUCTION		
	
In	general,	most	of	the	lubricated	systems	can	
be	 considered	 to	 consist	 of	 moving	
/stationary	 surfaces	 (plane/curve,	
loaded/unloaded)	 with	 a	 thin	 film	 of	 an	
external	 material	 (lubricant)	 between	 them.	
The	 presence	 of	 such	 a	 thin	 film	 between	
these	 surfaces	 not	 only	 helps	 to	 support	
considerable	load	but	also	minimizes	friction.	
The	 characteristics	 such	 as	 pressure	 in	 the	
film,	 frictional	 force	 at	 the	 surface,	 flow	 rate	
of	 the	 lubricant	 etc.	 of	 the	 system	 depend	
upon	the	nature	of	the	surfaces,	the	nature	of	
the	lubricant	film	boundary	conditions	etc.	

	
The	equation	governing	 the	pressure	generated	
in	the	lubricant	film	can	be	obtained	by	coupling	
the	 equations	 of	 motion	 with	 the	 equation	 of	
continuity	and	was	first	derived	by	Reynolds	[1]	
in	 1886	 and	 is	 known	 as	 ``Reynolds	 Equation’’.	
In	 deriving	 this	 equation,	 the	 thermal,	
compressibility,	 viscosity	 variation,	 slip	 at	 the	
surfaces,	 inertia	 and	 surface	 roughness	 effects	
were	 ignored.	 Later	 this	 Reynolds	 equation	 is	
modified	in	1949	by	Cope	[2]	including	viscosity	
and	 density	 variation	 along	 the	 fluid	 film.	 In	
1957‐58	 the	 viscosity	 variation	 across	 the	 film	
thickness	 has	 been	 considered	 by	 Zienkiewicz	
and	 Cameron	 [3,4]	 who	 also	 pointed	 out	 that	
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temperature	 gradient	 and	 viscosity	 variation	
across	 the	 film	may	not	be	 ignored.	 In	 the	year	
1962,	 Dowson	 [5]	 unified	 the	 various	 attempts	
in	 generalizing	 the	 Reynolds	 Equation	 by	
considering	 the	 variation	 of	 fluid	 properties	
across	as	well	as	along	the	fluid	film	thickness	by	
neglecting	 the	 slip	effects	at	 the	bearing	 surfaces.	
Since	 then	 many	 workers	 including	 myself	 have	
studied	 the	 effects	 of	 viscosity	 variation	 in	
lubricated	 systems	 by	 considering	 Reynolds	
Equation	 with	 energy	 equation	 [6‐13].	 R.M.Patel	
et.al	 [14]	 studied	 the	 performance	 of	 a	magnetic	
fluid	 based	 squeeze	 film	 between	 transversely	
rough	 triangular	 plates.	 Also	 M.E.Shimpi	 ,	
G.M.Dehari	 [15]	 studied	 surface	 roughness	 and	
elastic	deformation	effects	on	the	behaviour	of	the	
magnetic	 fluid	 based	 squeeze	 film	 between	
rotating	 porous	 circular	 plates	 with	 concentric	
circular	 pockets	 and	 improved	 in	 2012	 to	 the	
rotating	curved	porous	circular	plates	[16].In	 this	
study	 the	 effects	 of	 velocity‐slip	 and	 viscosity	
variation	 in	 squeeze	 film	 lubrication	 of	 two	
circular	plates	has	been	discussed.	
	
	
2. BASIC	EQUATIONS		
	
Consider	the	laminar	flow	of	a	fluid	between	two	
symmetric	 surfaces,	 whose	 physical	
configuration	 is	 as	 shown	 in	 the	 Fig.	 1.	
Considering	 the	 variation	 of	 fluid	 properties	
across	 as	 well	 as	 along	 the	 film	 thickness,	 the	
basic	 equations	 of	 motion	 and	 equation	 of	
continuity	in	their	general	form	for	a	newtonian	
fluid	can	be	written	as:	
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with	 the	 following	 usual	 assumptions	 of	
lubrication	theory:	
	

	
Fig.	1.		Coordinate	System.	
	
1) Inertia	 and	body	 force	 terms	are	negligible	

compared	 with	 the	 pressure	 and	 viscous	
terms.	

2) There	is	no	variation	of	pressure	across	the	

fluid	film,	which	means	
z


	=0.	

3) There	 is	 no	 slip	 in	 the	 fluid‐solid	
boundaries.	

4) No	external	forces	act	on	the	film.	
5) The	flow	is	viscous	and	laminar.	
6) Due	 to	 the	 geometry	 of	 fluid	 film	 the	

derivatives	of	u	and	v	with	respect	to	z			are	
much	 larger	 than	 other	 derivatives	 of	
velocity	components.		

7) The	 height	 of	 the	 film	 h	 is	 very	 small	
compared	to	the	bearing	length	l.		
A	typical	value	of	h/l	is	about	10‐3.	

	
The	 Navier–Stokes	 equation	 (1)	 can	 be	
simplified	by	Dowson	[5]	as	follows	
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where	P	=	P	(x,y)	is	the	pressure	in	the	film	and		
 	is	the	viscosity.		
	
The	boundary	conditions	considering	slip	at	the	
surfaces	[17]	are:	
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where			(					)1					(					)2		denote	the	value	at	z	=	H1	
and	 z	 =	 H2.	 Here	  ’s	 and	  ’s	 are	 molecular	
mean	 free	 path	 for	 gas	 lubrication	 and	 depend	
upon	 the	 lubricant	 temperature,	 pressure	 and	
viscosity.	In	liquid	lubrication		  	and	 	depend	
on	viscosity	and	the	coefficient	is	sliding	friction.	
However,	 with	 porous	 bearings	  	 and	  	 are	
functions	 of	 slip	 coefficient	 at	 the	 wall	 and	 the	
permeability	parameter	of	the	porous	facing.	
Integrating	 equation	 (3)	 and	 using	 boundary	
conditions	 (4)	 expressions	 for	 the	 fluid	 film	
velocities	are	obtained.	
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Integrating	 the	 equation	 of	 continuity	 (2)	w.r.t.		
z.	and	taking	limits	from	z	=	H1	to	z	=	H2	gives	
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The	integrals	of	( )u and	( )v 	are	evaluated	by	
partial	 integration.	 Introducing	 the	 expressions	
for	 ( )u 	 and	 ( )v 	 and	 their	 derivatives	 in	
equation	(7)	gives:	
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Equation	 (8)	 represents	 a	 generalized	 form	 of	
Reynolds	 equation	 for	 compressible	 fluid	 film	
lubrication	 considering	 slip	 velocities	 at	 the	
bearing	surfaces.	The	two	sets	of	functions	F	and	
G	depend	upon	 the	variation	of	 fluid	properties	
both	along	as	well	as	across	the	film	and	on	the	
slip	conditions	at	the	surfaces.		
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The	velocity	of	the	lubricant	can	vary	across	the	
film	 and	 may	 be	 different	 near	 the	 bearing	
surfaces	 owing	 to	 the	 reaction	 of	 additives	 and	
surfactants	with	the	surfaces	[18‐20].	
	
Considering	a	reasonable	case	where	the	density	
and	 viscosity	 of	 the	 lubricant	 near	 the	 bearing	
surfaces	 may	 be	 different	 from	 the	 central	
region,	we	can	have	
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The	 generalized	 equation	 with	 slip	 reduces	 to	
the	following	form.	
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here	Vs	is	the	resultant	velocity	towards	the	film.	
To	 see	 the	 effect	 of	 slip,	 consider	 three	
symmetrical	incompressible	layers	between	two	
solid	boundaries.	

21   		 321   	

	
H1	=	0	 			H2	=(h+a)=h,		h1	=	h3	=	a/2,			h2	=	(h‐a)	
	

 /12121  	 			 											(14)	
	
may	be	considered.	The	Reynolds	equation	can	
be	written	from	equation	(12)	as	follows:	
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	taking	



 1 as	the	slip	parameter.	

	
	
3. SQUEEZE	FILM	LUBRICATION	OF	TWO	
CIRCULAR	PLATES:	

	
Consider	the	squeeze	film	lubrication	between	two	
parallel	circular	plates	as	shown	 in	Fig.	2.	Let	 the	
film	thickness	of	the	lubricant	present	between	the	
two	plates	be	`h’	and	squeeze	velocity	be	`V’.	

	
Fig.	2.	Squeeze	film	between	two	Circular	Plates.		
	
The	governing	equation	of	 flow	of	 the	 lubricant	
in	the	case	of	squeeze	film	lubrication	is	given	by	
equation	[15]	as:	

	 							 V
dx

dP
F
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d
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4
																																	(16)	
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where	 h 	 is	 the	 total	 film	 thickness,	 a 	 is	 the	
thickness	of	the	peripheral	layer, k 	is	the	ratio	of	
the	 viscosities,	  	 be	 the	 viscosity	 of	 the	 base	
lubricant	 i.e.,	 the	 middle	 layer,	  	 be	 the	 slip	
parameter.	
	
The	 equation	 (16)	 can	 be	 written	 in	 the	
following	form:				

																							 V
dx
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and															
l

a
a  ;	

l

h
h  	;











l


 																	(18)	

The	 flow	 flux,	 Q	 of	 the	 lubricant	 is	 given	 by	
equation	(17)	as	

																													 





dx

dP
FbQ 42 																													(19)	

where	 4F 	is	given	by	the	equation(18)	and	 b 	is	
the	width	of	 the	bearing.	 In	 the	 case	of	 circular	
plates	b 	is	equal	to	 .2 r 	
	
The	 flux	 Q 	 obtained	 from	 the	 equation	 of	
continuity	is	given	by		

																													 VrQ 24 																																		(20)	
Now	from	equations	(19)	and	(20),	we	obtain		

																								
4F

Vr

dr

dP 
 																																							(21)	

The	boundary	condition	for	equation	(21)	is		

																					 0P 														at	 Rr  																																																

Now	 using	 the	 above	 condition	 and	 integrating	
equation	(21),	we	get	

																							  22

42
rR

F

V
P  																										(22)	

where	 R 	 is	 the	 radius	 of	 the	 approaching	
surfaces.	
	
The	load	capacity	W 	is	given	by		
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																								  PdrrW
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substituting	equation	(22)	in	(23),	we	get	
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V
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The	squeezing	time,T 	is	given	from	(24)	as		
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where	 ih 	 is	 the	 initial	 film	 thickness	 and	 fh 	 is	

the	final	film	thickness	and	 4F 	is	given	by	
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Now	 the	 equations	 (24)	 and	 (25)	 are	 non‐
dimensionalised	as	given	below	and	numerically	
analyzed	 to	 see	 the	 effects	 of	 velocity‐slip	 and	
viscosity	 variation.	 Similar	 results	 can	 be	
expected	for	the	case	of	parallel	plates.	
	
Equations	 (24)	 and	 (25)	 are	 non‐
dimensionalised	in	the	following	manner:	
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equations	 (26)	 and	 (27)	 are	 analyzed	
numerically	and	graphs	have	been	plotted.	
	
	

4.	RESULTS	AND	DISCUSSIONS	
	
a)	Load	Capacity:																											
	

The	 parameters	 considered	 here	 are	  , k 	 and	
a .	 So 	 represents	 the	 slip, k 	 represents	 the	
ratio	of	the	viscosities	of	the	peripheral	 layer	to	

the	middle	 layer	 and	 a 	 be	 the	 thickness	 of	 the	

peripheral	 layer.	  	 represents	 the	 non‐	
dimensionalised	 slip	 parameter.	 Low	 values	 of	

 	 indicates	high	 slip	 at	 the	 surfaces	 and	 as	  	
increases	the	slip	decreases	and	it	tends	to	zero	

for	 high	 values	 of	 	  .	 Thus	 an	 increases	 in	  	
indicates	decreasing	the	slip	at	the	surfaces.	
	

In	Figs.	3‐5,	the	load	capacity,	W 	is	plotted	w.r.t	 	
for	various	values	of	 k 	treating		 a 	as	constant.	All	
these	graphs	coincides	for	 .1k 		
	
It	 is	 seen	 from	 these	 figures	 that	 the	 load	

capacity	 increases	 as	  	 increases	 indicating	
that	the	load	capacities	decrease	due	to	slip	and	
decreases	 further	 as	 the	 slip	 parameter	
increases.	 It	 is	also	seen	 from	these	graphs	that	
the	 load	 capacities	 increase	 due	 to	 increase	 in	
the	 value	 of	 k 	 that	 is	 the	 peripheral	 layer	
viscosity	 i.e.,	 the	 capacity	 increase	 as	 the	
peripheral	layer	viscosity	increases.	
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Fig.	3.		Variation	of	W 	with	 	for	various	values	of	 k .	
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Fig.	4.		Variation	of	W 	with	 	for	various	values	of	 k .	
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Fig.	5.		Variation	of	W 	with	 	for	various	values	of	 k .	
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Fig.	6.	Variation	of	W 	with	 	for	various	values	of	a .	
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Fig.	7.	Variation	of	W 	with	a 	for	various	values	of	k .	
	

In	Fig.	6,	the	load	capacity	is	plotted	with	  	
for	various	values	of	 a 	(for	 1k ).	It	is	seen	
from	 these	 figures	 that	 the	 load	 capacity	
decreases	 as	 the	 slip	 increases	 and	 they	
increase	as	the	peripheral	layer	increases.	
In	Fig.	7,	the	load	capacity	is	plotted	with	 a 	 for	
various	 k .	 It	 is	 seen	 from	 the	 graph	 that	 for	

1k ,	 it	 is	 parallel	 to	 x‐axis.	 That	 is	 when	 the	
peripheral	 layer	viscosity	 is	same	as	 the	middle	
layer	 viscosity,	 the	 effect	 of	 increase	 in	 the	
peripheral	layer	is	nil	as	expected.	It	is	also	seen	
from	 the	 graph,	 that	 when 1k ,	 the	 load	
capacity	 decrease	 as	 the	 peripheral	 layer	

viscosity	increases	i.e.,	as	a 	increases.	
	
That	is	when	the	peripheral	layer	viscosity	is	less	
than	the	middle	layer	viscosity,	the	load	capacity	
decreases	 as	 the	 thickness	 peripheral	 layer	
increases.	It	is	also	seen	from	the	graph	that	when	

1k ,	 the	 load	 capacity	 increase	 as	 the	
peripheral	 layer	 viscosity	 increases	 indicating	
that	when	the	peripheral	layer	viscosity	is	higher	
than	the	middle	layer,	the	load	capacity	increases	
and	this		increase		is		enhanced			as		the		thickness	
of	 the	 peripheral	 	 layer	 increases.	 It	 is	 in	
agreement	 with	 the	 experimental	 reports	
observed	by	various	works	of	Cameron	etc.	 [17]	
that	 when	 high	 polymer	 additives	 are	 added	 to	
the	 base	 lubricant,	 the	 lubricant	 properties	
improved.	 The	 high	 polymer	 additives	 due	 to	
their	 affinity	 towards	 the	 surface	 attach	
themselves	to	the	surface	and	form	a	high	viscous	
layer	 near	 the	 surface,	 that	 is	 the	 case	 of	 1k ,	
where	we	observed	increase	in	the	load	capacity.	
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In	Figs.	8	and	9,	the	load	capacity	is	plotted	with	

k 	 for	 various	 a .	 It	 is	 found	 these	 figures,	 that	
the	 load	 capacity	 increases,	 as	 k 	 increases	 for	

1k 	 and	 it	 is	more	 for	 higher	 values	 of	 a 	 as	
expected	from	the	previous	results.	
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Fig.	8.	Variation	of	W 	with	k 	for	various	values	of	a .	
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Fig.	9.	Variation	of	W 	with	k 	for	various	values	of	a .	
	
b)	Squeezing	Time:	
	
Equation	 (27)	 is	 integrated	 numerically	 for	

various	values	of	  ,	 k , a 	and	graphs	have	been	
plotted	 	 for	 squeezing	 time	with	 various	 values	
of	these	parameters	in	Figs.	10‐14.	
	

In	 the	 Figs.	 10	 and	 11,	 squeezing	 time,	 T 	 is	

plotted	with	  	 for	 various	 k .	 It	 is	 found	 from	

these	 figures	 that	 the	 squeezing	 time	 increases	

as	  	 increases,	that	as	slip	parameter	increase.	
It	is	mentioned	earlier	that	the	slip	decreases	as	

 	increases.	Thus	due	to	slip	the	squeezing	time	
decreases	 and	 decreases	 further	 as	 the	 slip	
increases.	 It	 is	also	observed	 from	these	 figures	
that	the	squeezing	time	is	more	for	higher	values	
of	 k 	showing	that	the	squeezing	time	increases	
as	the	viscosity	of	the	peripheral	layer	increases.	
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Fig.	10.	Variation	of	T 	with	 	for	various	values	of	 k .	
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Fig.	11.	Variation	of	T 	with	 	for	various	values	of	 k .	
	

In	Fig.	12,	 the	squeezing	 time,T 	 is	plotted	with	

 	 for	 various	 values	 of	 a 	 taking	 0.2k .	 It	 is	
seen	from		these	graphs	that	the	squeezing	time	

increases	 as	  	 increases,	 i.e.,	 as	 the	 slip	
decreases	 and	 it	 has	 more	 value	 for	 higher	
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values	 of	 a ,	 showing	 that	 the	 squeezing	 	 time	
decreases	 as	 the	 slip	 increases.	 It	 is	 also	
observed	that	for	 1k ,	the		squeezing	time	has	

more	value	 for	higher	values	of	 a ,	 that	 is	when	
the	viscosity	of	 the	peripheral	 layer	 is	more	 than	
the	middle	layer,	the	squeezing	time	increases	and	
this	increase	is	enhanced	as	its	thickness	increases.			
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Fig.	12.	Variation	of	T with 	for	various	values	of	a .	
	

In	 Figs.	 13	 and	 14,	 the	 squeezing	 time,	 T 	 is	

plotted	with	 a 	for	various	values	of	 k .It	is	seen	
from	 this	 figure	 that	 when	 1k ,	 the	 graph	 is	
parallel	 to	 the	 x‐axis,	 that	 is	when	 the	viscosity	
of	 the	 peripheral	 layer	 and	 middle	 layer	 are	
equal,	 it	 has	 no	 effect	 on	 squeezing	 time	 as	 the	
peripheral	 layer	 thickness	 increases.	 	 It	 is	 also	
observed	 that	 when 1k ,	 the	 squeezing	 time	

decreases,	 as	 a 	 increases	 for	 1k 	 and	
increases	for	 1k .	
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Fig.	13.	Variation	of	T 	with	a 	for	various	values	of	k .	
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Fig.	14.	Variation	of	T 	with	k 	for	various	values	of	a 	
	
That	is	when	the	viscosity	of	the	peripheral	layer	
is	less	than	the	viscosity	of	the	middle	layer,	the	
squeezing	 time	 decreases	 as	 its	 thickness	
increases.		
	
On	 the	 other	 hand,	 when	 the	 viscosity	 of	 the	
peripheral	layer	is	more	than	the	viscosity	of	the	
middle	layer,	the	squeezing	time	increases	as	its	
thickness	 increases.	 It	 is	 in	 agreement	with	 the	
experimental	 reports	 observed	 by	 various	
workers.	
	
	
4.			CONCLUSION	
	
A	 generalized	 form	 of	 Reynolds	 equation	
applicable	to	fluid	film	lubrication	was	derived	
considering	 the	 variation	 of	 fluid	 properties,	
both	across	and	along	the	 film	thickness,	with	
velocity‐slip	 at	 the	 bearing	 surfaces.	 The	
effects	 of	 velocity‐slip	 and	 viscosity	 variation	
in	 squeeze	 film	 lubrication	 of	 two	 circular	
plates	have	been	studied.	The	beneficial	result	
for	 hydrodynamic	 lubrication	 due	 to	 the	
presence	 of	 increased	 viscosity	 near	 the	
bearing	surface	was	indicated.		
	
However,	 although	 the	 effects	 of	 velocity‐slip	
at	the	bearing	is	to	decrease	both	the	frictional	
force	 and	 the	 load	 capacity,	 the	 coefficient	 of	
friction	 increases,	 which	 leads	 to	 an	
unfavorable	 results.	 For	 a	 gas‐lubricated	
hydrostatic	bearing,	 the	gas	 film	pressure	and	
load	decrease	with	increasing	molecular	mean	
free	path.	
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Nomenclature	
	
h					Total	film	thickness	

fh 		Final	film	thickness	

k 				Ratio	of	the	viscosities	
l 					Length	of	the	bearing	
P					Hydrodynamic	Pressure	
R					Radius	of	the	surfaces	in	case	of	circular				
								plates	
T					Squeezing	time	of	for	stiff	surfaces	
V					Squeeze	Velocity	
W				Load	capacity	for	stiff	surfaces	
 			Viscosity	of	the	purely	hydrodynamic	zone	
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