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The	 influence	of	rice	husk	ash	(RHA)	and	silicon	carbide	(SiC)	weight	ratio	
on	the	mechanical	behaviour	of	Al‐Mg‐Si	alloy	matrix	hybrid	composites	was	
investigated.	RHA	and	SiC	mixed	 in	weight	ratios	0:1,	1:3,	1:1,	3:1,	and	1:0	
were	utilized	to	prepare	5,	7.5	and	10	wt%	of	the	reinforcing	phase	with	Al‐
Mg‐Si	 alloy	 as	 matrix	 using	 two‐step	 stir	 casting	 method.	 Density	
measurement,	 estimated	 percent	 porosity,	 tensile	 properties,	 fracture	
toughness,	and	SEM	examination	were	used	to	characterize	the	composites	
produced.	The	results	show	that	the	composites	were	of	good	casting	quality	
as	the	estimated	porosity	values	were	less	than	2.5	%	in	all	grades	produced.	
For	 the	 three	weight	 percent	worked	 on,	 the	 tensile‐,	 yield‐,	 and	 specific
strength	 decreases	with	 increase	 in	 the	weight	 proportion	 of	 RHA	 in	 the	
RHA‐SiC	reinforcement.	However,	the	results	show	that	the	composites	with	
composition	 of	 1:3	 weight	 ratio	 RHA:SiC	 (25%	 RHA:	 75%	 SiC)	 offers	
comparable	 specific	 strength	 values	 with	 the	 single	 SiC	 reinforced	 Al	
composite	grades.	The	strain	to	fractures	was	invariant	to	the	weight	ratio	
of	 RHA/SiC	 for	 all	 weight	 percent	 but	 the	 composite	 compositions	
containing	RHA	had	improved	fracture	toughness	compared	with	the	single	
SiC	reinforced	Al	composite	grades.		
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1. INTRODUCTION	
	
Alternative	sources	of	 reinforcements	 that	offer	
the	 potential	 of	 producing	 Aluminium	 matrix	
composites	 (AMCs)	 at	 reduced	 cost	 while	
maintaining	 high	 performance	 levels	 is	
attracting	 interests	 from	 researchers	 [1‐2].	
Compared	to	other	engineering	materials,	AMCs	
are	noted	for	the	rare	combination	of	properties	
they	 offer	 such	 as	 high	 specific	 strength	 and	

stiffness,	 good	 wear	 and	 corrosion	 resistance,	
low	 thermal	 coefficient	 of	 expansion,	 good	high	
temperature	 mechanical	 properties,	 and	
excellent	thermal	management	potentials	among	
others	 [3‐5].	 Aluminium	 based	 matrices	 also	
have	 the	 advantage	 that	 they	 are	 the	 cheapest	
among	 other	 competing	 matrix	 materials	
(Copper,	Titanium,	Magnesium)	for	metal	matrix	
composites	 (MMCs)	 development;	 and	 also	 are	
amenable	 to	 processing	 using	 techniques	
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conventionally	 suited	 for	 the	 production	 of	
metals	and	alloys	[6‐7].	
	
The	unique	properties	of	AMCs	are	derived	from	
the	 material	 characteristics	 of	 both	 the	 matrix	
and	 the	 reinforcing	 phases	 [8].	 The	
reinforcements	are	responsible	for	the	improved	
mechanical,	 wear,	 and	 high	 temperature	
properties	of	 the	AMCs	[9‐10].	Thus	 the	 type	of	
reinforcement	 and	 reinforcement	 parameters	
such	as	size,	volume	fraction,	distribution,	shape,	
and	 orientation	 often	 affect	 significantly	 the	
properties	 of	 AMCs	 [11].	 The	 use	 of	 cheaper	
source	 of	 reinforcements	 such	 as	 industrial	
wastes	 (fly	 ash,	 red	 mud)	 [12‐13]	 and	 agro	
wastes	(rice	husk	ash,	bamboo	leaf	ash,	coconut	
shell	 ash)	 [14‐15]	 for	 AMCs	 development	 is	
gaining	 popularity	 considering	 its	 advantage	 in	
solid	waste	recycling	which	has	been	a	cause	for	
major	concern	over	 the	years.	Additional	 to	 the	
advantages	 of	 low	 cost,	 availability	 in	 large	
quantities,	 and	 contributions	 to	 creation	 of	 a	
more	 eco‐friendly	 environment;	 is	 lower	
densities	which	most	of	 the	agro	and	 industrial	
wastes	possess	in	comparison	with	the	synthetic	
reinforcements	such	as	silicon	carbide	(SiC)	and	
alumina	 (Al2O3)	 [16].	 The	 properties	 achieved	
with	the	sole	utilization	of	these	cheaper	source	
reinforcements	have	been	 reported	 to	be	 lower	
than	 that	 of	 the	 synthetic	 reinforced	 but	 with	
promise	 for	 use	 in	 semi‐structural	 and	 thermal	
management	 applications	 [17].	 The	 use	 of	
hybrid	 reinforcements	 utilizing	 SiC/Al2O3	 and	
agro	 waste	 ashes	 as	 a	 means	 of	 improving	 the	
properties	 of	 AMCs	 has	 attracted	 interest	
recently	with	very	encouraging	results	obtained	
[18‐19].		
	
The	 present	 work	 is	 aimed	 at	 investigating	 the	
influence	of	 the	weight	ratios	of	rice	husk	ash	and	
silicon	 carbide	 on	 the	 mechanical	 behaviour	
Aluminium	matrix	hybrid	composites	having	varied	
weight	 percent	 of	 both	 reinforcements.	 The	
motivation	 for	 this	 work	 is	 to	 establish	 optimum	
RHA/SiC	 weight	 ratios	 required	 to	 achieve	
optimized	performance	of	low	cost	AMCs	developed	
with	the	use	of	rice	husk.	Literatures	on	the	use	of	
synthetic/agrowaste	 hybrid	 reinforcements	 for	
AMCs	development	are	still	very	limited	and	there	
is	currently	none	that	the	authors	are	aware	of	that	
discusses	 the	 use	 of	 RHA	 and	 SiC	 as	 hybrid	
composites	in	Al‐Mg‐Si	alloy	matrix.	
	
	

2. MATERIALS	AND	METHOD	
	
2.1	Materials	
	
Al‐Mg‐Si	alloy	billets	with	chemical	composition	
determined	 using	 spark	 spectrometric	 analysis	
(Table	1)	was	selected	as	Aluminium	matrix	 for	
this	 investigation.	 For	 the	 hybrid	 reinforcing	
phases,	 silicon	 carbide	 (SiC)	 and	 rice	 husk	 ash	
(RHA)	 were	 selected.	 The	 silicon	 carbide	
procured	 was	 of	 high	 chemical	 purity	 with	
average	particle	 size	 of	 28	µm	while	 rice	husks	
utilized	 for	 the	processing	of	 rice	husk	ash	was	
obtained	 from	 Igbemo‐Ekiti,	 Ekiti	 State	 (a	 rice	
producing	community	in	south	western	Nigeria).	
Magnesium	 for	 improving	 wettability	 between	
the	 Al‐Mg‐Si	 alloy	 and	 the	 reinforcements	 was	
also	procured.		
	
Table	1.	Elemental	composition	of	Al‐Mg‐Si	alloy.	

Element wt%
Si 0.4002
Fe 0.2201
Cu 0.008
Mn 0.0109
Mg 0.3961
Cr 0.0302
Zn 0.0202
Ti 0.0125
Ni 0.0101
Sn 0.0021
Pb 0.0011
Ca 0.0015
Cd 0.0003
Na 0.0009
V 0.0027
Al 98.88

	
2.2	Preparation	of	Rice	Husk	Ash	
	
The	 procedure	 adopted	 is	 in	 accordance	 with	
Alaneme	et	al	[16].	It	involves	the	use	of	a	simple	
metallic	 drum	 with	 perforations	 as	 burner	 for	
the	 rice	 husk.	 Dry	 rice	 husks	 placed	 inside	 the	
drum	was	 ignited	with	 the	use	of	 charcoal.	The	
husk	 was	 allowed	 to	 burn	 completely	 and	 the	
ashes	removed	24	hours	later.	The	ash	was	then	
heat‐treated	at	a	 temperature	of	650	oC	 for	180	
minutes	to	reduce	its	carbonaceous	and	volatile	
constituents.	Sieving	of	the	bamboo	leaf	ash	was	
then	 performed	 using	 a	 sieve	 shaker	 to	 obtain	
ashes	with	mesh	size	under	50	µm.	The	chemical	
composition	 of	 the	 rice	 husk	 ash	 from	 this	
process	is	presented	in	Table	2.	
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Table	2.	Chemical	Composition	of	the	Rice	Husk	Ash.	

Compound/Element	(constituent)	 wt%
Silica	(SiO2)	 91.59
Carbon,	C	 4.8

Calcium	oxide	CaO	 1.58
Magnesium	oxide,	MgO 0.53
Potassium	oxide,	K2O 0.39
Haematite,	Fe2O3	 0.21
Sodium,	Na	 trace

Titanium	oxide,	TiO2	 0.20
	
2.3	Composites	Production	
	
Two	 step	 stir	 casting	 process	 was	 utilized	 to	
produce	the	composites	[20].	The	process	started	
with	 the	 determination	 of	 the	 quantities	 of	 rice	
husk	ash	(RHA)	and	silicon	carbide	(SiC)	required	
to	 produce	 5,	 7.5,	 and	 10	 wt%	 reinforcement	
consisting	of		RHA	and	SiC	in	weight	ratios	0:1,	1:3,	
1:1,	3:1,	and	1:0		respectively	(which	amounts	to	0,	
25,	 50,	 75,	 and	100	%	RHA	 in	 the	 reinforcement	
phase).	 The	 rice	 husk	 ash	 and	 silicon	 carbide	
particles	 were	 initially	 preheated	 separately	 at	 a	
temperature	of	250	oC	to	eliminate	dampness	and	
improve	 wettability	 with	 the	 molten	 Al‐Mg‐Si	
alloy.	The	Al‐Mg‐Si	alloy	billets	were	charged	into	a	
gas‐fired	 crucible	 furnace	 (fitted	 with	 a	
temperature	probe),	and	heated	to	a	temperature	
of	750	oC	±	30	oC	(above	the	liquidus	temperature	
of	the	alloy)	to	ensure	the	alloy	melts	completely.	
The	liquid	alloy	was	then	cooled	in	the	furnace	to	a	
semi	solid	state	at	a	temperature	of	about	600	oC.		
	
Table	3.	Composite	Density	and	Estimated	Percent	Porosity.	

Sample	
Designation	

Composition	
RHA:	SiC	

Theoretical	
density	
(g/cm3)	

Experimental	
density	(g/cm3)

%	
Porosity

A0	 0	wt%	 2.700	 2.655	 1.67	
	 5wt%	 	 	 	
B1	 A	(0:1)	 2.721	 2.700	 0.77	
B2	 B	(1:3)	 2.691	 2.650	 1.52	
B3	 C	(1:1)	 2.660	 2.640	 0.75	
B4	 D	(3:1)	 2.630	 2.590	 1.52	
B5	 E	(1:0)	 2.599	 2.579	 0.77	
	 7.5	wt%	 	 	 	
C1	 A	(0:1)	 2.733	 2.670	 2.31	
C2	 B	(1:3)	 2.689	 2.640	 1.82	
C3	 C	(1:1)	 2.640	 2.590	 1.89	
C4	 D	(3:1)	 2.595	 2.570	 0.96	
C5	 E	(1:0)	 2.550	 2.510	 1.57	
	 10	wt%	 	 	 	
D1	 A	(0:1)	 2.743	 2.690	 1.9	
D2	 B	(1:3)	 2.680	 2.650	 1.11	
D3	 C	(1:1)	 2.620	 2.610	 0.3	
D4	 D	(3:1)	 2.560	 2.50	 2.34	
D5	 E	(1:0)	 2.500	 2.497	 0.12	

	
The	 preheated	 rice	 husk	 ash	 and	 SiC	 particles	
along	with	0.1	wt%	magnesium	were	then	charged	
into	 the	semi‐solid	melt	at	 this	 temperature	 (600	

oC)	 and	 stirring	 of	 the	 slurry	 was	 performed	
manually	 for	5‐10	minutes.	The	 composite	 slurry	
was	 then	 superheated	 to	 800	 oC±	 50	 oC	 and	 a	
second	 stirring	 performed	 using	 a	 mechanical	
stirrer.	The	stirring	operation	was	performed	at	a	
speed	 of	 400	 rpm	 for	 10	minutes	 before	 casting	
into	 prepared	 sand	 moulds	 inserted	 with	 chills.	
The	designations	used	to	represent	each	grade	of	
the	composites	produced	are	presented	in	Table	3.	
	
2.4	Density	Measurement	
	
The	 experimental	 density	 of	 each	 grade	 of	
composite	produced	was	determined	by	dividing	
the	 measured	 weight	 of	 a	 test	 sample	 by	 its	
measured	volume;	while	 the	 theoretical	density	
was	evaluated	by	using	the	formula:	

ρAl‐Mg‐Si	/	RHA‐SiCp	=	wt.Al‐Mg‐Si	×	ρAl‐Mg‐Si	+	wt.RHA	×	ρRHA	+	
wt.SiC	×	ρSiC				 	 																																								(2.1)	

where,	 ρAl‐Mg‐Si	 /	 RHA‐SiCp	 =	 Density	 of	 Composite,	
wt.Al‐Mg‐Si	=	Weight	 fraction	of	Al‐Mg‐Si	alloy,	 ρAl‐
Mg‐Si	 =	Density	 of	 Al‐Mg‐Si	 alloy,	wt.RHA	=	Weight	
fraction	 RHA,	 ρRHA	 =	 Density	 of	 RHA,	 wt.	 SiC	 =	
Weight	fraction	SiC,	and	ρSiC	=	Density	of	SiC.		
	
The	 experimental	 densities	 were	 compared	 with	
the	 theoretical	 densities	 for	 each	 composition	 of	
the	RHA‐SiC	reinforced	composites	produced;	and	
it	 served	 as	 basis	 for	 evaluation	 of	 the	 percent	
porosity	of	the	composites	using	the	relations	[20]:	

							%	porosity	=	{(ρT	–	ρEX)	÷	ρT}	×	100	%						(2.2) 																							

where,	 ρT	 =	 Theoretical	 Density	 (g/cm3),	 ρEX	 =	
Experimental	Density	(g/cm3).				
	
2.5	Tensile	Properties	
	
The	 tensile	 properties	 of	 the	 composites	 was	
evaluated	with	the	aid	of	tensile	tests	performed	
following	 the	 specifications	 of	 ASTM	 8M‐91	
standards	 [21].	 The	 samples	 for	 the	 test	 were	
machined	to	round	specimen	configuration	with	
6	 mm	 diameter	 and	 30	 mm	 gauge	 length.	 The	
test	was	carried	out	at	room	temperature	using	
an	Instron	universal	testing	machine	operated	at	
a	 strain	 rate	 of	 10‐3/s.	 Three	 repeat	 tests	were	
performed	 for	 each	 grade	 of	 composite	
produced	 to	 guarantee	 repeatability	 and	
reliability	 of	 the	 data	 generated.	 The	 tensile	
properties	 evaluated	 from	 the	 stress‐strain	
curves	developed	from	the	tension	test	are	‐	the	
ultimate	 tensile	 strength	 (σu),	 the	 0.2	 %	 offset	
yield	strength	(σy),	and	the	strain	to	fracture	(εf).	
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2.6	Fracture	Toughness	Evaluation	
	
The	 fracture	 toughness	of	 the	composites	was	
evaluated	 using	 circumferential	 notch	 tensile	
(CNT)	 specimens	 [22].	 Samples	 for	 the	 CNT	
testing	 were	 machined	 having	 gauge	 length,	
specimen	 diameter	 (D),	 notch	 diameter	 (d),	
and	 notch	 angle	 of	 30,	 6,	 4.5	 mm,	 and	 60	 oC	
respectively.	 The	 specimens	 were	 then	
subjected	 to	 tensile	 loading	 to	 fracture	 using	
an	 Instron	 universal	 testing	 machine.	 The	
fracture	 load	 (Pf)	 obtained	 from	 the	 load	 –	
extension	 plots	 generated	 from	 the	 CNT	
testing	 were	 used	 to	 evaluate	 the	 fracture	
toughness	 using	 the	 empirical	 relations	 by	
Dieter	[23]:		

																K1C=Pf/(D)3/2[1.72(D/d)–1.27]										(2.3)																																																																

where,	D	 and	d	 are	 respectively	 the	 specimen	
diameter	 and	 the	 diameter	 of	 the	 notched	
section.	The	validity	of	 the	 fracture	 toughness	
values	 obtained	 was	 determined	 using	 the	
relations	 in	 accordance	 with	 Nath	 and	 Das	
[24]:	

																								D	≥	(K1C/σy)2																																				(2.4)																																																																																										

Three	 repeat	 tests	 were	 performed	 for	 each	
composite	 composition	 and	 the	 results	
obtained	were	 taken	 to	be	highly	consistent	 if	
the	difference	 between	measured	 values	 for	 a	
given	composite	composition	is	not	more	than	
2	%.	
	
2.7	Microstructural	Examination	
	
A	 JSM	 7600F	 Jeol	 ultra‐high	 resolution	 field	
emission	 gun	 scanning	 electron	 microscope	
(FEG‐SEM)	 equipped	with	 an	EDS	was	used	 for	
detailed	 microstructural	 study	 and	 for	
determination	of	 the	 elemental	 compositions	of	
the	composites.		
	
	
3.	RESULTS	AND	DISCUSSION	
	
3.1	Microstructure	
	
Figure	 1	 shows	 some	 representative	 SEM	
micrographs	of	the	RHA	‐	SiC	reinforced	AMCs	
produced.	 It	 is	 observed	 that	 there	 is	 a	 good	
dispersion	 of	 the	 RHA	 and	 SiC	 particulates	 in	
the	 Al	 alloy	matrix	 and	 little	 particle	 clusters	
are	 observed.	 Thus	 there	 is	 no	 significant	
problem	 of	 segregation	 or	 sedimentation	

which	 often	 occurs	 during	 solidification	 of	
MMCs	 having	 components	 with	 different	
densities	 and	 wettability	 characteristics	 [25].	
This	 shows	 that	 the	 two	 step	 stir	 casting	
process	 adopted	 for	 the	 production	 of	 the	
composites	 is	 reliable	 judging	 from	 the	
microstructures	examined	in	Fig.	1.		
	

	
(a)	

	
(b)	

	
(c)	
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(d)	

	
(e)	

Fig.	 1.	 (a)	 SE	 image	 of	 the	 Al‐Mg‐Si/5	 wt%	 SiC	
composite	 showing	 the	 SiC	 particles	 dispersed	 in	 the	
Al‐Mg‐Si	 matrix;	 (b)	 SE	 image	 of	 the	 5	 wt%	 hybrid	
reinforced	 Al‐Mg‐Si/RHA‐SiC	 composite	 having	 RHA:	
SiC	weight	 ratio	 of	 1:3;	 (c)	 SE	 image	 of	 the	 7.5	wt%	
hybrid	reinforced	Al‐Mg‐Si/RHA‐SiC	composite	having	
RHA:	 SiC	weight	 ratio	 of	 1:3;	 (d)	 SE	 image	 of	 the	 10	
wt%	 hybrid	 reinforced	 Al‐Mg‐Si/RHA‐SiC	 composite	
having	RHA:	SiC	weight	ratio	of	1:3;	(e)	SE	image	of	the	
Al‐Mg‐Si/10	 wt%	 RHA	 composite	 showing	 the	 RHA	
particles	dispersed	in	the	Al‐Mg‐Si	matrix.	
	

	
(a)	

	
(b)	

Fig.	 2.	 (a)	 Representative	 SE	 Photomicrograph	
showing	the	reinforcing	particles	dispersed	in	the	Al‐
Mg‐Si	matrix;	 (b)	 EDS	 profile	 of	 the	 particle	 in	 2(a)	
confirming	 the	 presence	 of	 Al2O3,	 SiO2,	 Fe2O3,	 K2O,	
CaO,	SiC	and	Na.	

	

	
(a)	

	
(b)	

Fig.	 3.	 (a)	 Representative	 SE	 Photomicrograph	 of	
some	 clustered	 particles	 dispersed	 in	 the	 Al‐Mg‐Si	
matrix;	(b)	EDS	profile	the	particles	identified	in	3(a)	
confirming	the	presence	of	Al2O3,	SiO2,	Fe2O3,	SiC,	Cao,	
and	 Na	 which	 are	 constituents	 from	 the	 RHA‐SiC	
hybrid	reinforcement.	
	
The	 EDS	 profiles	 of	 the	 particulates	 in	 the	
composites	 produced,	 some	 of	 which	 are	
presented	 in	 Figs.	 2	 and	 3,	 show	 peaks	 of	
aluminium	 (Al),	 oxygen	 (O),	 carbon	 (C),	 iron	
(Fe),	 silicon	 (Si),	 calcium	(Ca),	 sodium	(Na)	and	
magnesium	 (Mg).	 The	 presence	 of	 these	
elements	confirm	the	presence	of	SiC;	as	well	as	
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silica	 (SiO2),	 alumina	 (Al2O3),	 Potassium	 oxide	
(K2O),	ferric	oxide	(Fe2O3),	and	Magnesium	oxide	
(MgO)	which	 are	 constituents	 derived	 from	 the	
rice	husk	ash	(Table	2).			
	
3.2	Composite	Density	and	Estimated	Percent	

Porosity	
	
The	 results	 of	 the	 composite	 densities	 and	
estimated	 percent	 porosity	 are	 presented	 in	
Table	3.	 It	 is	observed	 from	the	results	 that	 the	
estimated	porosity	values	are	not	dependent	on	
the	 weight	 percent	 of	 the	 reinforcement	 phase	
or	 the	weight	ratio	of	RHA	to	SiC.	 It	 is	however	
noted	that	the	estimated	porosity	levels	are	less	
than	 4	 %	 which	 has	 been	 reported	 to	 be	 the	
maximum	 permissible	 in	 cast	 AMCs	 [26].	 The	
low	 porosity	 levels	 of	 the	 composites	 supports	
our	 submission	 that	 the	 two	 step	 stir	 casting	
method	adopted	for	producing	the	composites	is	
reliable.	As	a	result	of	the	lower	density	of	RHA	
(0.31	g/cm3)	in	comparison	to	SiC	(3.6	g/cm3),	it	
is	 expected	 that	 the	 density	 of	 the	 composites	
will	 reduce	with	 increase	 in	 the	RHA	content	 in	
the	composite	as	observed	from	Table	3.	
	
3.3	Mechanical	Behaviour	
	
The	 variation	 of	 tensile	 strength	 and	 yield	
strength	 of	 the	 composites	 produced	 is	
presented	in	Figure	4.	It	is	observed	that	there	is	
a	 general	 increase	 in	 tensile	 strength	 (Fig.	 4a)	
and	 yield	 strength	 (Fig.	 4b)	 with	 increase	 in	
weight	 percent	 of	 the	 RHA‐SiC	 hybrid	
reinforcement.	 However,	 for	 specific	 weight	
percents	 of	 the	 hybrid	 composites	 (that	 is	B,	 C,	
and	 D	 series),	 it	 is	 noted	 that	 the	 tensile	 and	
yield	 strength	 decreases	 with	 increase	 in	 the	
weight	 proportion	 of	 RHA	 in	 the	 RHA‐SiC	
reinforcement.	 For	 the	 composites	 containing	 5	
wt%	of	the	reinforcing	phase,	it	is	observed	that	
4.9,	 8.9,	 12.5,	 and	 15.8	 %	 reduction	 in	 tensile	
strength	was	obtained	from	the	composites	with	
weight	 ratio	 RHA:	 SiC	 of	 1:3,	 1:1,	 3:1,	 and	 1:0	
(that	is	containing	25,	50,	75,	and	100	%	RHA)	in	
comparison	to	the	5	wt%	SiC	single	reinforced	Al	
matrix	composite.	For	the	composites	containing	
7.5	wt%	of	 the	 reinforcing	phase,	 reductions	of	
5,	 9,	 13.4,	 and	 19	 %	 were	 observed	 for	 the	
compositions	 of	 1:3,	 1:1,	 3:1,	 1:0	 RHA:	 SiC	
weight	 ratios	 respectively	 (in	 comparison	 with	
the	7.5	wt%	SiC	single	reinforced	composite).	In	
the	 case	 of	 the	 composites	 containing	 10	 wt%	
reinforcements,	 reductions	 of	 4,	 8.1,	 13.2,	 and	

18.3	%	was	observed	in	comparison	to	the	10	wt	
%	SiC	single	reinforced	Al	matrix	composite.	
	

	
(a)	

	
(b)	

Fig.	 4.	 (a)	 Variation	 of	 tensile	 strength	 for	 the	
monolithic	 Al‐Mg‐Si	 alloy,	 single	 reinforced	 and	
hybrid	 reinforced	 Al‐Mg‐Si/RHA‐SiC	 composites;	 (b)	
variation	of	yield	strength	for	the	monolithic	Al‐Mg‐Si	
alloy,	single	reinforced	and	hybrid	reinforced	Al‐Mg‐
Si/RHA‐SiC	composites.	
	
	It	 has	 been	 well	 reported	 that	 particle	
reinforced	AMCs	achieve	improved	strength	due	
to	 load	transfer	from	the	matrix	to	the	particles	
(direct	 strengthening)	 and	 creation	 of	 more	
dislocations	which	serve	as	constraints	to	plastic	
deformation	 by	 thermal	mismatch	 between	 the	
particles	and	the	Aluminium	matrix	arising	from	
their	 differences	 in	 coefficient	 of	 thermal	
expansion	 (indirect	 strengthening)	 [27‐28].	
Thus	even	 in	a	scenario	where	the	particles	are	
not	 sufficiently	 strong	 to	 induce	 strengthening	
via	the	‘direct	route’	of	load	transfer	from	matrix	
to	 particles,	 the	 indirect	 strengthening	 it	 could	
offer	 is	 adequate	 to	 induce	 some	 strength	
improvements	 well	 and	 above	 that	 of	 the	
monolithic	 alloy.	 In	 the	 present	 case	 under	
investigation,	the	reduction	in	strength	observed	
with	 increase	 in	 the	 RHA	 content	 of	 the	
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composites	 is	 as	 a	 result	 of	 the	 decrease	 of	 the	
direct	 strengthening	 capacity	 of	 RHA	 which	
contains	 predominantly	 silica.	 Silica	 is	 noted	 to	
be	 a	 softer	 ceramic	with	 elastic	modulus	of	 60‐
70	GPa,	which	is	within	the	range	of	Aluminium	
unlike	 SiC	 which	 has	 an	 elastic	 modulus	 of	
400GPa.	Thus	the	efficiency	of	load	transfer	from	
the	 Al	 matrix	 to	 the	 particles	 (load	 carrying	
capacity)	 of	 the	 hybrid	 particulates	 will	 be	
dependent	 on	 the	 amount	 of	 SiC	 than	 RHA.	
However,	it	should	be	noted	that	samples	B5,	C5,	
and	 D5	 which	 contain	 only	 RHA,	 show	 a	
progressive	 increase	 in	 tensile	 strength	 and	
yield	strength	with	the	increased	weight	percent	
of	 RHA	 supporting	 our	 hypothesis	 that	 the	
indirect	 strengthening	 mechanism	 (which	
entails	 dislocation	 generation	 results	 in	 higher	
dislocation	 densities	 with	 increased	 weight	
percent	 of	 the	 particles)	 can	 result	 in	 modest	
improvement	 in	 strength	 with	 increase	 in	 the	
weight	percent	of	the	reinforcing	particles.	
	
The	 variation	 of	 the	 specific	 strength	 of	 the	
composites	 produced	 with	 weight	 ratio	 of	
RHA/SiC	 is	 presented	 in	 Fig.	 5.	 It	 is	 observed	
that	 the	 specific	 strengths	 of	 the	 composites	
generally	 increased	with	 increase	 in	 the	weight	
percent	of	the	reinforcing	phase	(that	is	RHA‐SiC	
weight	 percent).	 Also	 the	 specific	 strength	
values	 decreases	 with	 increase	 in	 the	 RHA	
content	in	the	hybrid	reinforcement.		
	

	
Fig.	 5.	 Variation	 of	 specific	 strength	 for	 the	
monolithic	 Al‐Mg‐Si	 alloy,	 single	 reinforced	 and	
hybrid	reinforced	Al‐Mg‐Si/RHA‐SiC	composites.	
	
However,	 the	%	decrease	 in	specific	strength	of	
the	composites	is	generally	lower	in	comparison	
with	 that	 of	 the	 ultimate	 tensile	 strength	
analyzed	earlier.	For	the	5	wt%	compositions,	it	
is	 observed	 that	 3.1,	 6.8,	 8.75,	 and	 11.9	 %	
reduction	 in	 specific	 strength	 is	 obtained.	 For	

the	7.5	wt	%	compositions	(grades)	3.93,	6.2,	10	
and	 13.9	 %	 reductions	 were	 obtained.	 In	 the	
case	of	the	10	wt%	grade,	2.6,	5.3,	6.54,	and	11.9	
%	 reductions	 were	 obtained.	 The	 results	 show	
that	 the	 composites	 with	 composition	 of	 1:3	
weight	ratio	RHA:	SiC	(25	%	RHA:	75	%	SiC)	can	
offer	 comparable	 specific	 strength	 values	 at	
reduced	 cost	 of	 production	 of	 the	 composite	
since	its	difference	is	less	than	4	%	for	the	three	
weight	percents	of	reinforcement	worked	on.	
	
The	results	of	 the	variation	of	strain	 to	 fracture	
of	 the	 composites	 with	 weight	 percent	
reinforcement	 and	 weight	 ratio	 RHA/SiC	 is	
presented	in	Fig.	6.	It	is	observed	that	there	is	a	
general	 decrease	 in	 ductility	 of	 the	 composites	
with	 increase	 in	 the	 weight	 percent	 of	
reinforcing	 phase	 in	 the	 composites.	 Closer	
observation	 show	 that	 for	 each	weight	 percent	
of	 hybrid	 composites	 produced,	 the	 strain	 to	
fracture	 was	 invariant	 to	 the	 weight	 ratio	 of	
RHA/SiC.	It	can	be	inferred	from	the	results	that	
the	 ductility	 levels	 of	 the	 hybrid	 composites	 is	
not	compromised	by	the	addition	of	RHA	in	 the	
hybrid	compositions.	Thus	its	capacity	to	sustain	
plastic	strain	without	fracture	is	not	impelled	by	
the	addition	of	RHA.		
	

	
Fig.	 6.	 Variation	 of	 strain	 to	 fracture	 for	 the	
monolithic	 Al‐Mg‐Si	 alloy,	 single	 reinforced	 and	
hybrid	reinforced	Al‐Mg‐Si/RHA‐SiC	composites.	
	
The	 fracture	 toughness	 values	 determined	 by	
the	use	of	circumferential	notched	tensile	(CNT)	
specimens	 are	 presented	 in	 Fig.	 7.	 The	 values	
obtained	were	 reported	 as	 plain	 strain	 fracture	
toughness	 because	 the	 conditions	 for	 valid	 K1C	
(plain	 strain	 condition)	 was	 met	 with	 the	
specimen	diameter	of	6mm	when	the	relation	D	
≥	 (K1C/σy)2	 [24]	 was	 utilised	 to	 validate	 the	
results	 obtained	 from	 the	 CNT	 testing.	 It	 is	
observed	 that	 the	 fracture	 toughness	 decreases	
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with	 increase	 in	 the	 weight	 percent	 of	 the	
composites.	 But	 for	 specific	 weight	 percents	 of	
the	 composites	 (that	 is	 B,	 C,	 and	 D	 series)	 it	 is	
observed	 that	 the	 composite	 compositions	
containing	 RHA	 had	 improved	 fracture	
toughness	 results	 compared	with	 the	 single	 SiC	
reinforced	 grades	 of	 the	 composites.	 Thus	 the	
addition	 of	 RHA	 appears	 to	 be	 beneficial	 in	
terms	 of	 improving	 the	 resistance	 to	 crack	
propagation	 of	 the	 composites	 making	 them	
slightly	 less	 susceptible	 to	 sudden	 crack	 failure	
in	 comparison	 with	 the	 single	 reinforced	 SiC	
composite	grades.		The	mechanism	of	fracture	in	
particle	 reinforced	 Al	 matrix	 composites	 have	
been	 reported	 by	 several	 authors	 [29‐30].	 The	
primary	 mechanisms	 of	 fracture	 have	 been	
reported	 to	 be	 facilitated	 by	 one	 or	 a	
combination	 of	 particle	 cracking,	 interfacial	
cracking	 or	 particle	 debonding	 [31].	 In	 the	
present	case,	the	improved	fracture	toughness	of	
the	 composites	 containing	 RHA,	 is	 most	 likely	
due	 to	 the	 reduced	 amount	of	 relatively	harder	
and	brittle	 SiC	 particles	 in	 the	 composites	 [19].	
The	 SiC	 particles	 like	 most	 hard	 and	 brittle	
ceramic	 particles	 have	 a	 higher	 tendency	 to	
undergo	rapid	crack	propagation	[32].	
	

	
Fig.	 7.	 Variation	 of	 Fracture	 Toughness	 for	 the	
monolithic	 Al‐Mg‐Si	 alloy,	 single	 reinforced	 and	
hybrid	reinforced	Al‐Mg‐Si/RHA‐SiC	composites.	
	
	
4. CONCLUSIONS	
	
The	mechanical	behaviour	of	Al‐Mg‐Si	alloy	matrix	
composites	containing	5,	7.5,	and	10	weight	percent	
of	RHA	and	SiC	reinforcements	prepared	in	weight	
ratios	 0:1,	 1:3,	 1:1,	 3:1,	 and	 1:0	 respectively	 was	
investigated.	The	results	show	that:	

1. The	 estimated	 porosity	 values	 are	 not	
dependent	 on	 the	 weight	 percent	 of	 the	
reinforcement	 phase	 or	 the	weight	 ratio	 of	

RHA	 to	 SiC.	 They	 were	 however	 less	 than	
2.5	%	in	all	grades	produced.		

2. There	 is	 a	 general	 increase	 in	 tensile	
strength,	and	yield	strength	with	increase	in	
weight	 percent	 of	 the	 RHA‐SiC	 hybrid	
reinforcement.	 However,	 the	 tensile	 and	
yield	 strength	 decreases	 with	 increase	 in	
the	weight	 proportion	 of	 RHA	 in	 the	 RHA‐
SiC	reinforcement.		

3. The	 specific	 strength	 followed	 the	 same	
trend	 as	 the	 tensile	 and	 yield	 strengths;	
however,	 the	 %	 decrease	 in	 specific	
strength	 of	 the	 composites	 is	 generally	
lower	 in	 comparison	 with	 that	 of	 the	
ultimate	 tensile	 strength.	 The	 composites	
with	composition	of	1:3	weight	ratio	RHA	to	
SiC	(25%	RHA:	75%	SiC)	offers	comparable	
specific	 strength	 values	with	 the	 SiC	 single	
reinforced	grades	of	the	composite.	

4. There	is	a	general	decrease	in	ductility	of	the	
composites	 with	 increase	 in	 the	 weight	
percent	 of	 reinforcing	 phase	 in	 the	
composites.	 However,	 the	 strain	 to	 fracture	
was	invariant	to	the	weight	ratio	of	RHA/SiC.		

5. The	 fracture	 toughness	 decreases	 with	
increase	 in	 the	 weight	 percent	 of	 the	
composites.	 But	 the	 composite	
compositions	containing	RHA	had	improved	
fracture	 toughness	 compared	 with	 the	
single	SiC	reinforced	grades.		
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