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	 A	B	S	T	R	A	C	T	

Optical	glass	is	widely	used	in	bioengineering	and	various	utilities	such	as	
public	 touchscreen	 displays	 and	mobile	 devices.	 This	work	 evaluates	 the	
features	 of	 anti‐bacterial	 and	 anti‐adhesion	 on	 Octadecyltrichlorosilane	
(OTS)	material	 that	was	mixed	with	a	biocompatible	antibacterial	agent	
coated	on	 the	optical	glass.	Test	samples	were	allocated	 to	different	bath	
and	 drying	 temperatures	as	well	as	 reaction	 times.	Results	 show	 that	 in	
angle	 contact	 experiments,	pure	OTS	 films	 and	mixed	antibacterial	 films	
have	almost	the	same	contact	angle	of	about	105°	under	the	conditions	of	a	
12	hour	reaction	 time	and	80	 °C	reaction	 temperature.	The	antibacterial	
test	indicated	the	following	order:	antibacterial	agent>	OTS+	antibacterial	
agent	 (50	%)	 >	 OTS+	 antibacterial	 agent	 (10	%)	 >	 OTS.	 At	 the	 same	
operation	condition,	OTS	mixed	with	50	%	antibacterial	agent	was	able	to	
increase	 the	adhesion	 force	between	 the	OTS	 film	and	 lens.	This	 suggests	
that	 surface	 treatment	 of	 optical	 lenses	 involving	 OTS	 with	 50	 %	
antibacterial	 solution	 is	 the	most	 effective	 for	 increasing	antifouling	and	
antibacterial	 functions	 while	 simultaneously‐	 enhancing	 the	 adhesion	
function	between	films	and	lens	surfaces.	
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1. INTRODUCTION	
	
The	 uses	 of	 self‐assembled	 monolayer	 (SAMs)	 in	
biomedicine	 utilities	 have	 been	 increasing	
rapidly,	 such	 as	 in	 biosensors,	 non‐fouling	
surfaces,	 bioactive	 surfaces,	 and	 drug	 delivery	
[1,2].	 The	 OTS	 monolayer	 is	 one	 of	 the	 most	
extensively	 studied	 self‐assembled	 monolayers	
[3‐5].	 Therefore,	 how	 to	 improve	 the	 adhesion	
and	anti‐bacterial	performance	of	SAM	films	has	
become	 an	 attractive	 topic	 in	 order	 to	 enhance	
device	application	and	reliability.	Bierbum	[6,7]	

noted	that	the	substrate	surface	water	layers	are	
an	 important	 factor	 in	 the	 formation	 of	 OTS	
films.	 Bierbum	 explained	 that	 OTS	 molecules	
initially	 spread	 vertically	 on	 substrate	 surfaces	
and	 then	 cluster	 after	 locating	 activation	
positions.	 Subsequently,	 other	 OTS	 molecules	
spread	 to	 cluster	 edges	 and	 form	 islands.	 The	
molecules	 then	 spread	 outwards	 and	 cause	
adsorbed	molecules	to	 form	connections,	 finally	
forming	 tightly	 connected	monolayers.	 In	1998,	
Vaillant	 et	 al.	 [8]	 used	 atomic	 force	microscopy	
(AFM)	 and	 a	 Fourier‐transform	 infrared	
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spectrometer	 (FTIR)	 to	 observe	 the	 process	 by	
which	 OTS	 molecules	 form	 films	 on	 substrate	
surfaces.	 	 Results	 showed	 that	 a	 larger	 amount	
of	 water	 in	 the	 solutions	 cause	 the	 OTS	
molecules	 to	undergo	a	hydrolysis	 reaction	and	
produce	 polymerization	 within	 the	 solution,	
leading	 to	 	 cloud‐shaped	 or	 island‐shaped	
molecular	 films	 being	 formed	 throughout	 the	
solution.	 In	 contrast,	 solutions	 with	
comparatively	 low	proportions	of	water	 exhibit	
point	 distributions	 and	 chaotically	 grown	 OTS	
molecules	 that	 organize	 into	 a	 liquid‐like	 form.	
While	 surface	 diffusion	 renders	 OTS	 molecules	
as	 absorbing	 molecules	 within	 a	 solution,	 the	
tightly	knit,	island‐shaped	structures	are	formed	
by	messy	molecule	films.		
	
Resch	 [9]	 also	 used	 AFM	 and	 found	 that	 OTS	
molecules	 initially	 grow	 chaotically	 and	
irregularly.	With	 the	 passage	 of	 time,	 molecules	
covering	 the	 surface	 spread	 horizontally	 and	
ultimately	form	tightly	arranged	molecular	films.	
Carraro	et	al.	[10]	examined	the	formation	of	OTS	
SAMs	 under	 different	 ambient	 temperatures.	
They	 discovered	 that	 when	 the	 ambient	
temperature	 falls	 below	 16	 °C,	 OTS	 first	 forms	
islands	 or	 clouds	 and	 then	 films;	 by	 contrast,	
when	the	ambient	temperature	rises	above	40	°C,	
the	films	grow	evenly	instead	of	forming	islands.	
However,	 films	 form	 more	 quickly	 at	 lower	
temperatures.	 The	 formation	 of	 an	 OTS	
monolayer	 on	 a	 material	 surface	 is	 highly	
sensitive	 	 to	 	 several	 	 factors,	 including	 the		
density	 	 of	 	 surface	 	 hydroxyl	 	 groups,	 	 reaction	
temperature,	 reaction	 environment,	 reaction	
time,	solvent	used	to	deposit	OTS,	water	content	
of	the	solvent,	concentration	of	OTS,	solution		age,	
roughness	 of	 	 the	 	 underlying	 	 substrate,	 	 and	
cleaning	procedures	after	SAM	deposition	[11].	
	
The	main	requirements	that	must	be	satisfied	by	
all	 bioengineering	 surfaces	 are	 corrosion	
resistance,	 biocompatibility,	 bioadhesion,	 and	
biofunctionality	 [12].	 In	 particular,	 for	
lubrication	 motion	 devices,	 the	 biodegradable,	
bioadhesion	 and	 anti‐bacterial	 functions	 of	 the	
surface	 and	 lubricant	 have	 become	 topics	 of	
great	research	interest	for	industrial	application	
[13,14].	 Therefore,	 how	 to	 improve	 the	
biocompatibility,	 adhesion	 and	 anti‐bacterial	
performance	 of	 SAM	 films	 has	 become	 an	
attractive	 task	 in	 order	 to	 enhance	 device	
application	and	reliability.	
	

2. EXPERIMENTAL	
	
The	 optical	 lenses	 were	 ultrasonicated	 in	
acetone	 and	 sequentially	 rinsed	 with	
tetrahydrofuran	 solvent	 and	 deionized	 water	
(DI)	 and	 then	 immediately	 dipped	 in	 the	 OTS	
solution	 containing	 approximately	 40	 ml.	 For	
the	 preparation	 of	 SAM	 films,	 	 OTS	 	 was		
dissolved		in		alcohol		and		prepared		to		a		molar		
concentration	 of	 10	 mM,	 and	 then	 mixed	 with	
different	 proportions	 of	 antibacterial	 agent	 (10	
%	and	50	%).	The	test	pieces	were	placed	in	the	
solutions	 at	 different	 bath	 temperatures	 and	
duration	 times,	 but	 both	with	 a	 drying	 time	 of	
10	min.	The	test	pieces	were	then	removed	and	
set	aside	for	12	hrs	before	being	ultrasonicated	
in	 acetone	 for	 5	 min	 to	 remove	 any	 loosely	
bound	material;	after	which,	they	were	rinsed	in	
DI	water	and	blown	dry	with	nitrogen	gas.	The	
molecular	structure	of	OTS	is	shown	in	Table	1,	
which	 reveals	 that	 its	 hydrophobic	 properties	
come	 from	 the	 terminal	 group	 (CH3).	The	main	
composition	 of	 the	 biocompatible	 antibacterial	
agent	 is	 bioflavonoids	 and	 citric	 acid,	 which	
come	from	plants.	
	
Table	1.	The	molecular	structure	of	OTS.	

SAMs	 Molecular	formula
Head	
group	

Terminal	group	

OTS	 CH3(CH2)17SiCl3	 ‐SiCl3	 ‐CH3	

	

	
Fig.	1.	Contact	angle	equipment.	
	
For	 the	 experimental	 investigation	 of	
hydrophobic	properties	for	the	different	surface	
films	 on	 the	 lens,	 FTA	 contact	 angle	 equipment	
was	used	to	measure	the	contact	angle,	as	shown	
in	Fig.	1.	A	 larger	contact	angle	 indicates	better	
hydrophobic	 and	 anti‐fouling	 properties	 of	
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surfaces,	 and	 contact	 angles	were	measured	 on	
both	 sides	 of	 the	 water	 drop.	 Droplet	 profiles	
were	captured	using	a	video	comprised	of	digital	
frames	 over	 a	 period	 of	 12	 seconds	 and	
transferred	 to	 a	 computer	 for	 angle	
measurement.	 The	 adhesion	 force	 between	
surface	 films	 and	 substrates	 were	 measured	
using	atomic	force	microscopy	(AFM)	in	scratch	
mode.	 AFM	was	 also	 used	 to	 examine	 samples’	
topography	before	and	after	SAM	deposition	by	
the	non‐contact	mode.	
	
	
3. RESULTS	AND	DISCUSSION	
	
In	 the	 contact	 angle	 analysis	 of	 various	
operation	 conditions,	 the	 measurement	 data	 of	
each	 test	 piece	was	 obtained	 from	 the	mean	 of	
five	measurements.	Figure	2(a)	is	a	photo	of	the	
contact	angle	for	the	original	lens,	while	Fig.	2(b)	
is	 a	 photo	 of	 the	 contact	 angle	 for	 the	 OTS	
material.	 One	 can	 find	 that	 the	 OTS	 film	 can	
effectively	 increase	 the	 lens	 surface	 contact	
angle.	 Figure	 2(c)	 shows	 that	 the	 contact	 angle	
changes	 with	 various	 reaction	 times	 and	 bathe	
temperatures.	 More	 specifically,	 it	 shows	 that	
the	higher	 the	bath	temperature,	 the	higher	 the	
contact	 angle;	 and	 further,	 the	 longer	 the	
reaction	 time,	 the	 higher	 the	 contact	 angle.	
However,	the	variation	of	contact	angles	 for	the	
OTS+50	 %	 antibacterial	 agent	 films	 under	
various	 reaction	 time	 conditions	 are	 all	 quite	
low.	 The	 difference	 in	 contact	 angle	 between	
reaction	times	of	12	hours	and	24	hours	is	very	
small,	so	this	is	not	shown	in	the	figure.	Bathing	
OTS+50	%	agent	 films	at	a	bath	 temperature	of	
80	 °C	 gradually	 increased	 the	 contact	 angle	 to	
approximately	 105	 degrees.	 The	 various	
reaction	 times	 and	bath	 temperature	have	 very	
little	influence	on	the	contact	angle.	
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Fig.	2.	Contact	 angles	 (a)	 photo	 of	 original	 lens;	 (b)	
photo	 of	 OTS	 film;	 and,	 (c)	 comparison	 chart	 for	
different	reaction	times	and	temperatures.	
	
X‐ray	photoelectron	spectroscopy	(XPS)	detection,	
as	 shown	 in	 Fig.	 3,	 confirmed	 that	OTS	material	
bonds	 on	 the	 lens	 surface	 [11].	 In	 summary,	 a	
bath	 temperature	 of	 80	 °C	 and	 duration	 time	 of	
12	hours	was	 chosen	as	 the	operation	condition	
in	 order	 to	 investigate	 the	 antibacterial	
characteristics	of	the	surface	film	on	lenses.		
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Fig.	3.	XPS	spectrum	diagram	of	the	OTS	film	at	the	bath	
temperature	of	80	°C	and	duration	time	of	12	hours.	
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The	 various	 roughness	 values	 of	 different	
surface	materials	are	shown	in	Fig.	4.	Roughness	
tests	 were	 conducted	 in	 air	 at	 a	 relative	
humidity	 of	 about	 50	%	using	AFM	 in	 the	non‐
contact	 mode,	 where	 the	 scanned	 detection	
range	was	40	µm	×	40	µm.	The	various	 surface	
roughness	 values	 of	 different	 surface	 materials	
are	 shown	 in	 Fig.	 4(a).	 The	 comparison	 chart	
shows	 that	 the	antibacterial	agent	can	decrease	
the	 surface	 roughness	 value	 of	 pure	 OTS	 films.	
The	 surface	 roughness	 value	 of	 the	 OTS	 film	
incorporating	 10	 %	 antibacterial	 agent	 is	
approximately	 175	 nm,	 whereas	 the	 OTS	 film	
roughness	 value	 with	 50	%	 antibacterial	 agent	
decreased	 to	 approximately	 100	 nm.	 The	 3‐D	
topography	 image	 for	 the	 hybrid	 organic	
molecular	 film	 (OTS	+	50	%	agent)	 is	 shown	 in	
Fig.	 4(b).	 Island‐shaped	 structures	 formed	 on	
the	surface,	as	mentioned	in	Vaillant’s	work	[8],	
which	 shows	 that	 hybrid	 organic	 films	 exhibit	
uniform	 surface	 coverage	with	 regular	patterns	
of	 island	 formations.	 This	 indicates	 that	 the	
antibacterial	 agent	was	 absorbed	 and	 stored	 in	
the	topographic	valleys	of	the	OTS	film.		
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Fig.	4.	 (a)Roughness	 values	 of	 the	 different	 surface	
films;	and,	(b)	3‐D	topography	image	of	the	OTS	+	50	
%	antibacterial	agent	film.	

The	 reliability	 and	 beauty	 requirements	 of	 the	
display	 elements	 for	 manufacture	 become	
important	 in	 their	 service	 life.	 The	 light	
transmittance	 and	 film	 adhesion	 properties	 are	
one	of	the	key	performance	indices	of	 lenses.	In	
order	 to	 explore	 the	 relation	 between	 surface	
film	 and	 light	 transmittance	 of	 a	 lens,	 Fig.	 5	
shows	 that	 transmittance	 of	 the	 OTS	 film	 and	
antibacterial	 agent	 on	 the	 lens.	Results	 indicate	
that	 the	OTS	 surface	 film	 slightly	 decreases	 the	
light	transmittance	of	the	original	lens;	however,	
the	 antibacterial	 agent	 has	 very	 little	 influence	
on	 transmittance.	 The	 minimum	 value	 of	
transmittance	is	93.6	%	for	the	film	of	OTS	+	50	%	
agent	film.	This	verifies	that	all	transmittances	of	
surface	 films	 are	 acceptable	 for	 industrial	
applications	and	life	utilities	in	our	work.	
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Fig.	5.	Light	 transmittance	 of	 different	 surface	 films	
on	lenses.	
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Fig.	6.	Critical	loads	between	surface	films	and	substrate.	
	
Film	adhesion	is	another	key	performance	index	of	
lenses	 for	 reliability.	 Figure	6	 shows	 the	 effect	 of	
the	 antibacterial	 agent	 on	 the	 critical	 load	 of	
surface	films	on	the	lens.	The	scratch	tests	indicate	
that	high	critical	loads	of	films	have	high	resistance	
against	 film	 wear	 out.	 It	 shows	 that	 the	

Ra=102 nm 
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antibacterial	 agent	 increases	 the	 critical	 load	
between	 the	 OTS	 film	 and	 lens.	 Mixing	 the	
antibacterial	 agent	 (50	 %)	 in	 the	 OTS	 material	
increases	the	critical	load	to	approximately	104N.	
In	 summary,	 the	 surface	 treatment	 of	 optical	
lenses	 involving	 OTS+	 Agent	 (50	%)	 is	 the	most	
capable	of	effectively	increasing	the	anti‐adhesion	
function	between	films	and	lens	surfaces.		
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Fig.	7.	(a)Bacterial	growth	situation	on	original	 lens;	
(b)	 bacterial	 growth	 situation	 on	 the	 OTS	 film;	 (c)	
effect	of	surface	film	material	with	antibacterial.	
	
In	the	antibacterial	tests,	staphylococcus	aureus	
(SA)	 were	 inoculated	 with	 different	 self‐
assembled	 films;	 and	 then	 after	 24	 hours,	
bacteria	values	were	measured	(Japan	standard:	
JISZ	2801:2010).	Figures	7(a)	and	 (b)	 show	the	
growth	 situation	 of	 SA	 on	 the	 general	 lens	 and	

the	 OTS	 +	 50	%	 agent	 film.	 The	 SA	 number	 on	
the	mixed	 film	 is	 less	 than	 that	 on	 the	 general	
lens.	 	 Figure	 7(c)	 is	 the	 comparison	 chart	 of	 the	
bacteria	 count	 for	 the	 different	 surface	 films.	 For	
the	 general	 lens	 surface,	 the	 bacteria	 count	 is	
about	135,000	after	24	hours.	The	pure	OTS	 film	
also	 has	 little	 antibacterial	 function,	 and	 shows	
that	 the	 bacteria	 count	 on	 OTS	 with	 50	 %	
antibacterial	 agent	 and	 the	 pure	 antibacterial	
agent	surface	is	less	than	10.	This	is	far	lower	than	
the	bacteria	value	of	5.3	×	104	on	the	OTS	film.	
	
	
4. CONCLUSION	
	
This	work	 studied	 the	 features	of	 anti‐bacterial	
and	 anti‐adhesion	 on	 OTS	 self‐assembled	
monolayers	 mixed	 with	 a	 biocompatible	
antibacterial	agent	coated	on	optical	lenses.	The	
results	can	be	concluded	as	follows:	

1. Both	OTS	and	mixed	OTS	film	can	effectively	
increase	the	contact	angle	of	a	lens	surface	at	
various	 bath	 temperatures	 as	 well	 as	
duration	 times,	 and	 effectively	 reduce	 the	
device	adhesion	force.		

2. The	 addition	 of	 the	 antibacterial	 agent	 has	
little	 effect	 on	 the	 contact	 angle	 and	 light	
transmittance	of	pure	OTS	films.	

3. The	 antibacterial	 agent	 can	 effectively	
reduce	 the	 surface	 roughness	 and	 increase	
the	adhesion	force	and	antibacterial	abilities	
of	 pure	 OTS	 film	 on	 lens	 surfaces	 (reaction	
time	=	12	hrs,	reaction	temperature	=	80	°C).	
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