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	 A	B	S	T	R	A	C	T	

In	 the	 present	 study,	 friction	 coefficient	 and	wear	 rate	 of	 gear	 fiber	
reinforced	plastic	 (gear	 fiber)	and	glass	 fiber	 reinforced	plastic	 (glass	
fiber)	sliding	against	mild	steel	are	investigated	experimentally.	In	order	
to	do	so,	a	pin	on	disc	apparatus	is	designed	and	fabricated.	Experiments	
are	carried	out	when	smooth	or	rough	mild	steel	pin	slides	on	gear	fiber	
and	glass	fiber	disc.	 	Experiments	are	conducted	at	normal	load	10,	15	
and	20	N,	sliding	velocity	1,	1.5	and	2	m/s	and	relative	humidity	70%.		
Variations	 of	 friction	 coefficient	 with	 the	 duration	 of	 rubbing	 at	
different	 normal	 loads	 and	 sliding	 velocities	 are	 investigated.	 Results	
show	 that	 friction	 coefficient	 is	 influenced	 by	 duration	 of	 rubbing,	
normal	load	and	sliding	velocity.	In	general,	friction	coefficient	increases	
for	a	certain	duration	of	rubbing	and	after	that	it	remains	constant	for	
the	 rest	 of	 the	 experimental	 time.	 The	 obtained	 results	 reveal	 that	
friction	coefficient	decreases	with	the	 increase	 in	normal	 load	 for	gear	
fiber	 and	 glass	 fiber	 mating	 with	 smooth	 or	 rough	 mild	 steel	
counterface.	On	the	other	hand,	 it	 is	also	found	that	friction	coefficient	
increases	 with	 the	 increase	 in	 sliding	 velocity	 for	 both	 of	 the	 tested	
materials.	Moreover,	wear	 rate	 increases	with	 the	 increase	 in	normal	
load	 and	 sliding	 velocity.	 The	 magnitudes	 of	 friction	 coefficient	 and	
wear	rate	are	different	depending	on	sliding	velocity	and	normal	 load	
for	both	smooth	and	rough	counterface	pin	materials.	
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1. INTRODUCTION		
	
Numerous	investigations	have	been	carried	out	
on	 friction	 and	 wear	 of	 different	 materials	
under	 different	 operating	 conditions.	 Several	
researchers	 [1‐6]	 observed	 that	 the	 friction	
force	and	wear	rate	depend	on	roughness	of	the	

rubbing	 surfaces,	 relative	 motion,	 type	 of	
material,	 temperature,	 normal	 force,	 relative	
humidity,	 vibration,	 etc.	 The	 parameters	 that	
dictate	the	tribological	performance	of	polymer	
and	 its	 composites	 include	 polymer	 molecular	
structure,	 processing	 and	 treatment,	
properties,	 viscoelastic	 behavior,	 surface	
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texture,	 etc.	 [7‐10].	 There	 have	 been	 also	 a	
number	 of	 investigations	 exploring	 the	
influence	 of	 test	 conditions,	 contact	 geometry	
and	 environment	 on	 the	 friction	 and	 wear	
behavior	 of	 polymers	 and	 composites.	 [11‐13]	
reported	 that	 the	 tribological	 behavior	 of	
polyamide,	high	density	polyethylene	and	their	
composites	 is	 greatly	 affected	 by	 normal	 load,	
sliding	speed	and	temperature.	[14‐15]	showed	
that	 applied	 load	 and	 sliding	 speed	 play	
significant	 role	 on	 the	 wear	 behavior	 of	
polymer	 and	 composites.	 They	 also	 showed	
that	 applied	 load	 has	more	 effect	 on	 the	wear	
than	 the	 speed	 for	 composites.	 Experiments	
were	carried	out	on	friction	and	wear	behavior	
of	 poly‐ether‐imide	 and	 its	 composites	 under	
different	 operating	 conditions	 [16‐19].	
Polymers	 and	 its	 composites	 are	 extensively	
used	 in	 sliding/rolling	 components	 such	 as	
gears,	 cams,	 bearings,	 rollers,	 transmission	
belts	 and	 grinding	 mills	 where	 their	 self‐
lubricating	 properties	 are	 exploited	 to	 avoid	
the	 need	 for	 oil	 or	 grease	 lubrication	 with	 its	
attendant	 problems	 of	 contamination	 [20,21].	
However,	 when	 the	 contact	 between	 sliding	
pairs	is	present,	there	is	the	problem	of	friction	
and	 wear.	 [22‐24]	 demonstrated	 that	 the	
friction	 coefficient	 can,	 generally,	 be	 reduced	
and	 the	wear	 resistance	 increased	by	 selecting	
the	right	material	combinations.	
	
It	 was	 reported	 [25‐27]	 that	 the	 influence	 of	
sliding	 speed	 on	 friction	 and	wear	 of	 polymer	
and	its	composite	is	greater	than	that	of	applied	
load	 though	 some	 other	 researchers	 have	
different	views.	Unal	et	al.	[28,29]reported	that	
the	applied	load	exerts	greater	influence	on	the	
sliding	wear	of	polymer	and	its	composites	than	
the	 sliding	 speed.	 Transfer	 film	 has	 important	
effects	 on	 the	 tribological	 behavior	 of	 polymer	
and	 its’	 composite.	 If	 the	 transfer	 film	 is	 thin,	
uniform	and	continuous,	 the	wear	 loss	and	 the	
friction	coefficient	are	 low	[30].	The	results	by	
[31,32]	 showed	 that	 tribological	 performance	
of	 polymer	 material	 can	 be	 improved	
significantly	 by	 fibre	 reinforcement	 or	 fillers.	
The	 reason	was	 that	 the	 transfer	 films	 formed	
and	adhered	close	on	the	surface	of	counterface	
material	 during	 friction	 which	 resulted	 in	 the	
increase	 in	 wear	 resistance	 of	 the	 composites	
[31,10].	It	was	showed	[33]	that	reinforcement	
of	 fibre	 or	 filler	 significantly	 improves	 the	
tribological	behavior	of	polymeric	material	but	
this	 is	 not	 necessarily	 true	 for	 all	 cases.	
Franklin	 [34]	 reported	 that	 wear	 behavior	 of	

polymers	 under	 dry	 reciprocating	 sliding	
conditions	does	not	always	follow	the	generally	
accepted	 engineering	 rule	 of	 ‘higher	 sliding	
speed,	 the	 higher	 wear	 rate’.	 The	 influence	 of	
normal	load	on	the	friction	coefficient	and	wear	
rate	 of	 different	 polymer	 and	 composite	
materials	 was	 investigated	 [35]	 and	 it	 was	
found	that	the	values	of	friction	coefficient	and	
wear	 rate	 are	 different	 for	 different	materials.	
Several	 researchers	 [36‐39]	 reported	 that	
friction	 coefficient	 of	 polymers	 and	 its	
composites	 rubbing	 against	metal	 increases	 or	
decreases	 depending	 on	 the	 range	 of	 sliding	
speed	 and	 sliding	 pairs.	 	 Researchers	 [40‐43]	
have	 also	observed	 that	 the	 friction	 coefficient	
of	polymers	and	its	composites	rubbing	against	
metals	 decreases	 with	 the	 increase	 in	 load	
though	 some	 other	 researchers	 have	 different	
views.	 It	 was	 showed	 [45‐47]	 that	 value	 of	
friction	 coefficient	 increases	 with	 the	 increase	
in	 load.	 Friction	 coefficient	 and	 specific	 wear	
rate	 values	 for	 different	 combinations	 of	
polymer	 and	 its	 composite	were	 obtained	 and	
compared	[27].	For	all	material	combinations,	it	
was	 observed	 that	 the	 coefficient	 of	 friction	
decreases	 linearly	with	 the	 increase	 in	 applied	
pressure	 values.	 Unal	 et	 al.	 [37,29]	 reported	
that	 the	 applied	 load	 exerts	 greater	 influence	
on	 the	 sliding	 wear	 of	 polymer	 and	 its	
composite	 than	 the	 sliding	 velocity.	 Friction	
and	 wear	 behavior	 of	 glass	 fiber‐reinforced	
polyester	 composite	 were	 studied	 and	 results	
showed	 that	 in	 general,	 friction	 and	 wear	 are	
strongly	 influenced	 by	 all	 the	 test	 parameters	
such	 as	 applied	 load,	 sliding	 speed,	 sliding	
distance	and	 fiber	orientations	 [48].	Moreover,	
it	 was	 found	 that	 applied	 normal	 load,	 sliding	
speed	 and	 fiber	 orientations	 have	 more	
pronounced	 effect	 on	 wear	 rate	 than	 sliding	
distance.	 Wang	 and	 Li	 [26]	 observed	 that	 the	
sliding	 velocity	 has	 more	 significant	 effect	 on	
the	 sliding	 wear	 as	 compared	 to	 the	 applied	
load	and	variations	of	wear	rate	with	operating	
time	 can	 be	 distinguished	 by	 three	 distinct	
periods.	 These	 periods	 are	 running‐in	 period,	
steady	 state	 period	 and	 severe	 wear	 period,	
respectively.	 The	 friction	 and	 the	 wear	
behavior	 of	 the	 polymeric	material	 depend	 on	
the	 nature,	 thickness	 and	 stability	 of	 the	
transfer	 film	 that	 is	 formed	 and	 on	 the	
properties	of	the	metallic	counter	face	material	
[49].	 Yang	 [50]	 	 studied	 the	 transfer	 of	
polytetrafluoroethylene	 (PTFE)	 on	 to	 316	
stainless	steel	and	silicon	wafers	using	infrared	
spectrophotometry	 and	 founds	 that	 it	 was	
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strongly	 time	 and	 temperature	 dependent	 and	
reached	a	steady	state	after	a	certain	period	of	
contact.	Tsukizoe	and	Ohmae	[33]	showed	that	
reinforcement	 of	 fiber	 or	 filler	 significantly	
improve	 the	 tribological	behavior	of	polymeric	
material	 but	 this	 is	 not	 necessarily	 true	 for	 all	
cases.	Suresha	et	al.	[38]	showed	that	there	is	a	
strong	 inter‐dependence	 on	 the	 friction	
coefficient	 and	 wear	 loss	 with	 respect	 to	 the	
applied	 loads	 for	 steel	 composites	 contact.	 It	
was	 found	 that	 the	 coefficient	 of	 friction	 and	
wear	loss	 increase	with	the	increase	in	applied	
normal	load	for	all	the	samples	evaluated.	
	
From	 the	 aforementioned	 research	 works,	 it	
can	 be	 concluded	 that	 friction	 coefficient	 of	
composite	 materials	 at	 different	 normal	 loads	
and	sliding	velocities	differs	significantly.	Even	
now	a	day,	the	effect	of	normal	load	and	sliding	
velocity	on	friction	coefficient	and	wear	rate	of	
composite	 materials	 such	 as	 gear	 fiber	 and	
glass	 fiber	sliding	against	different	counterface	
surface	 conditions	 is	 less	 understood.	 This	
means	that	more	research	work	is	needed	for	a	
better	understanding	of	 friction	coefficient	and	
wear	 rate	 of	 these	 materials	 under	 different	
normal	 loads	 and	 sliding	 velocities	 for	 smooth	
and	rough	mild	steel	counterfaces.	Therefore,	in	
order	to	understand	more	clearly,	 in	this	study	
experiments	 are	 carried	 out	 to	 investigate	 the	
influence	of	normal	loads	and	sliding	velocities	
on	 friction	 coefficient	 and	 wear	 rate	 of	 gear	
fiber	and		glass	fiber.	The	effects	of	duration	of	
rubbing	 on	 friction	 coefficient	 of	 these	
materials	are	also	examined	in	this	study.		

	
		

2. EXPERIMENTAL	
	
A	schematic	diagram	of	the	experimental	set‐up	
is	shown	in	Fig.	1	i.e.	a	pin	which	can	slide	on	a	
rotating	horizontal	surface	(disc).	In	this	set‐up	
a	circular	 test	sample	 (disc)	 is	 to	be	 fixed	on	a	
rotating	 plate	 (table)	 having	 a	 long	 vertical	
shaft	 clamped	 with	 screw	 from	 the	 bottom	
surface	 of	 the	 rotating	 plate.	 The	 shaft	 passes	
through	 two	 close‐fit	 bush‐bearings	which	 are	
rigidly	 fixed	 with	 stainless	 steel	 plate	 and	
stainless	 steel	 base	 such	 that	 the	 shaft	 can	

move	 only	 axially	 and	 any	 radial	movement	 of	
the	 rotating	 shaft	 is	 restrained	 by	 the	 bush.	
These	 stainless	 steel	 plate	 and	 stainless	 steel	
base	 are	 rigidly	 fixed	with	 four	 vertical	 round	
bars	 to	 provide	 the	 rigidity	 to	 the	 main	
structure	 of	 this	 set‐up.	 The	 main	 base	 of	 the	
set‐up	is	constructed	by	10	mm	thick	mild	steel	
plate	 consisting	of	 3	mm	 thick	 rubber	 sheet	 at	
the	upper	side	and	20	mm	thick	rubber	block	at	
the	lower	side.	A	compound	V‐pulley	above	the	
top	stainless	steel	plate	was	fixed	with	the	shaft	
to	 transmit	 rotation	 to	 the	 shaft	 from	a	motor.	
An	electronic	speed	control	unit	is	used	to	vary	
the	 speed	 of	 the	 motor	 as	 required.	 A	 6	 mm	
diameter	 cylindrical	 pin	whose	 contacting	 foot	
is	 flat,	made	of	mild	 steel,	 fitted	on	a	holder	 is	
subsequently	 fitted	 with	 an	 arm.	 The	 arm	 is	
pivoted	with	a	separate	base	in	such	a	way	that	
the	 arm	 with	 the	 pin	 holder	 can	 rotate	
vertically	and	horizontally	about	the	pivot	point	
with	 very	 low	 friction.	 Sliding	 speed	 can	 be	
varied	 by	 two	 ways	 (i)	 by	 changing	 the	
frictional	 radius	 and	 (ii)	 by	 changing	 the	
rotational	 speed	 of	 the	 shaft.	 In	 this	 research,	
sliding	 speed	 is	 varied	 by	 changing	 the	
rotational	speed	of	 the	shaft	while	maintaining	
25	 mm	 constant	 frictional	 radius.	 To	 measure	
the	 frictional	 force	 acting	 on	 the	 pin	 during	
sliding	 on	 the	 rotating	 plate,	 a	 load	 cell	 (TML,	
Tokyo	Sokki	Kenkyujo	Co.	Ltd,	CLS‐10NA)	along	
with	 its	 digital	 indicator	 (TML,	 Tokyo	 Sokki	
Kenkyujo	Co.	Ltd,	Model	no.	TD‐93A)	was	used.	
The	 coefficient	 of	 friction	 was	 obtained	 by	
dividing	 the	 frictional	 force	 by	 the	 applied	
normal	 force	 (load).	 Wear	 was	 measured	 by	
weighing	 the	 test	 sample	 with	 an	 electronic	
balance	before	and	after	 the	 test,	 and	 then	 the	
difference	 in	mass	was	converted	to	wear	rate.	
To	 measure	 the	 surface	 roughness	 of	 the	 test	
samples,	 Taylor	 Hobson	 Precision	 Roughness	
Checker	(Surtronic	25)	was	used.	Each	test	was	
conducted	for	30	minutes	of	rubbing	time	with	
new	 pin	 and	 test	 sample.	 Furthermore,	 to	
ensure	 the	 reliability	 of	 the	 test	 results,	 each	
test	was	 repeated	 five	 times	and	 the	 scatter	 in	
results	was	small,	 therefore	the	average	values	
of	 these	 test	 results	 were	 taken	 into	
consideration.	 The	 detail	 experimental	
conditions	are	shown	in	Table	1.	
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Fig.	1.	Block	diagram	of	the	experimental	set‐up.	
	
Table	1.	Experimental	Conditions.	

Sl.	No.	 Parameters	 Operating	Conditions
1.	 Normal	Load	 10, 15,		20	N
2.	 Sliding	Velocity	 1,	1.5,		2	m/s
3.	 Relative	Humidity	 70	(	5)	%		
4.	 Duration	of	Rubbing 30	minutes
5.	 Surface	Condition	 Dry

6.	 Disc	material	
(i) Gear	fiber	reinforced	Plastic	
(ii) Glass	fiber	reinforced	plastic	

7.	 Roughness	of	Gear	and	Glass	fiber,	Ra	 0.70‐0.80	m	
8.	 Pin	material	 Mild	steel	

9.	 Roughness	of	mild	steel,	Ra	
(a)	Smooth	counterface:	about	0.30	m	
(b)	Rough	counterface:	about	3.0	m	

	
	
3. RESULTS	AND	DISCUSSION	
	
Figure	 2	 shows	 the	 variation	 of	 friction	
coefficient	 with	 the	 duration	 of	 rubbing	 at	
different	 normal	 loads	 for	 gear	 fiber	 sliding	
against	 smooth	 mild	 steel	 conterface.	 During	
experiment,	 the	 sliding	 velocity	 and	 relative	
humidity	 were	 1	 m/s	 and	 70	 %	 respectively.	
Curves	 1,	 2	 and	 3	 of	 this	 figure	 are	 drawn	 for	
normal	laod	10,	15	and	20	N	respectively.	Curve	1	
of	 this	 figure	 shows	 that	 during	 the	 starting,	 the	
value	 of	 friction	 coefficient	 is	 0.104	 and	 then	
increases	very	steadily	up	to	0.147	over	a	duration	
of	20	minutes	of	rubbing	and	after	that	it	remains	
constant	 for	 the	 rest	 of	 the	 experimental	 time.	
These	findings	are	in	agreement	with	the	findings	
of	 Chowdhury	 and	 Helali	 [4].	 At	 starting	 of	
experiment,	the	friction	force	is	low	due	to	contact	
between	 superficial	 layer	 of	 pin	 and	 disc.	 As	
rubbing	 continues,	 the	 disc	 material	 becomes	
worn	 and	 reinforced	 material	 comes	 in	 contact	

with	the	pin,	roughening	of	the	disc	surface	causes	
the	 ploughing	 and	 hence	 friction	 coefficient	
increases	with	duration	of	rubbing.		
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Fig.	2.	Friction	coefficient	as	a	function	of	duration	of	
rubbing	at	different	normal	 loads	(sliding	velocity:	1	
m/s,	relative	humidity:	70	%,	test	sample:	gear	fiber,	
pin:	mild	steel,	smooth).	
After	certain	duration	of	rubbing	the	increase	of	
roughness	and	other	parameters	may	reach	to	a	
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certain	steady	value	hence	the	values	of	 friction	
coefficient	 remain	 constant	 for	 the	 rest	 of	 the	
time.	 Curves	 2	 and	 3	 show	 that	 for	 the	 high	
normal	 load,	 the	 friction	 coefficient	 is	 less	 and	
the	 trend	 in	 variation	 of	 friction	 coefficient	 is	
almost	 the	 same	 as	 for	 curve	 1.	 From	 these	
curves,	 it	 is	 also	 observed	 that	 time	 to	 reach	
steady	 state	 values	 is	 different	 for	 different	
normal	 load.	 From	 the	 obtained	 results	 it	 is	
found	that	at	normal	load	10,	15	and	20	N,	gear	
fibre	takes	20,	17	and	15	minutes	respectively	to	
reach	steady	friction.	It	indicates	that	the	higher	
the	normal	 load,	 time	 to	 reach	constant	 friction	
is	 less.	 This	 may	 be	 due	 to	 the	 fact	 that	 the	
higher	 the	 normal	 load,	 the	 surface	 roughness	
and	other	parameters	take	less	time	to	stabilize.	
	
Figure	 3	 	 shows	 the	 effect	 of	 the	 duration	 of	
rubbing	 on	 the	 value	 of	 friction	 coefficient	 at	
different	 normal	 loads	 for	 gear	 fiber	 sliding	
against	 rough	 mild	 steel	 counterface	 at	 sliding	
velocity	 1	 m/s	 and	 relative	 humidity	 70	 %.	
Curve	1	of	this	figure	drawn	for	normal	load	10	
N,	shows	that	during	starting	of	the	experiment,	
the	 value	 of	 friction	 coefficient	 is	 0.153	 which	
rises	for	22	minutes	to	a	value	of	0.195	and	then	
it	 becomes	 steady	 for	 the	 rest	 of	 the	
experimental	 time.	 Almost	 similar	 trends	 of	
variation	are	observed	 in	curves	2	and	3	which	
are	 drawn	 for	 load	 15	 and	 20	 N	 respectively.	
From	these	curves,	it	is	found	that	time	to	reach	
steady	 friction	 is	 different	 for	 different	 normal	
loads.	At	normal	load	10,	15	and	20	N,	gear	fiber‐
mild	 steel	 rough	 pair	 takes	 22,	 19	 and	 16	
minutes	 respectively	 to	 reach	 steady	 friction	
That	 is,	 higher	 the	 normal	 load,	 gear	 fiber‐mild	
steel	rough	pair	takes	less	time	to	stabilize.	
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Fig.	3.	Friction	coefficient	as	a	function	of	duration	of	
rubbing	at	different	normal	 loads	(sliding	velocity:	1	
m/s,	relative	humidity:	70	%,	test	sample:	gear	fiber,	
pin:	mild	steel,	rough).	
Figure	 4	 shows	 the	 effect	 of	 the	 duration	 of	
rubbing	 on	 the	 value	 of	 friction	 coefficient	 at	
different	normal	load	for	glass	fiber	sliding	against	

smooth	 mild	 steel	 counterface.	 Curve	 1	 of	 this	
figure	 drawn	 for	 normal	 load	 10	 N,	 shows	 that	
during	 starting	 of	 the	 experiment,	 the	 value	 of	
friction	 coefficient	 is	 0.123	 which	 rises	 for	 21	
minutes	 to	 a	 value	 of	 0.167	 and	 then	 it	 becomes	
steady	 for	 the	 rest	 of	 the	 experimental	 time.	
Almost	similar	trends	of	variation	are	observed	in	
curves	2	and	3	which	are	drawn	for	load	15	and	20	
N,	 respectively.	 From	 the	 obtained	 results,	 it	 can	
also	be	seen	that	time	to	reach	constant	friction	is	
different	 for	different	normal	 load	and	higher	 the	
normal	load,	glass	fiber	takes	less	time	to	stabilize.	
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Fig.	4.	Friction	coefficient	as	a	function	of	duration	of	
rubbing	at	different	normal	 loads	(sliding	velocity:	1	
m/s,	relative	humidity:	70	%,	test	sample:	glass	fiber,	
pin:	mild	steel,	smooth).	
	
Several	 experiments	 are	 conducted	 to	 observe	
the	 effect	 of	 duration	 of	 rubbing	 on	 friction	
coefficient	 at	 different	 sliding	 speeds	 for	 glass	
fibre	sliding	against	rough	mild	steel	counterface	
and	these	results	are	presented	in	Fig.	5.		
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Fig.	5.	Friction	coefficient	as	a	function	of	duration	of	
rubbing	at	different	normal	 loads	(sliding	velocity:	1	
m/s,	relative	humidity:	70	%,	test	sample:	glass	fiber,	
pin:	mild	steel,	rough).	
Curve	1	of	this	figure	drawn	for	normal	load	10	
N,	shows	that	during	starting	of	the	experiment,	
the	 value	 of	 friction	 coefficient	 is	 0.175	 which	
rises	for	22	minutes	to	a	value	of	0.225	and	then	
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it	 becomes	 steady	 for	 the	 rest	 of	 the	
experimental	 time.	 Almost	 similar	 trends	 of	
variation	are	observed	 in	curves	2	and	3	which	
are	 drawn	 for	 load	 15	 and	 20	 N	 respectively.	
From	these	curves,	it	is	found	that	time	to	reach	
steady	 friction	 is	 different	 for	 different	 normal	
loads.	 At	 normal	 load	 10,	 15	 and	 20	 N,	 glass	
fiber‐mild	 steel	 rough	 pair	 takes	 20,	 18	 and	 15	
minutes	 respectively	 to	 reach	 steady	 friction	
That	 is,	higher	 the	normal	 load,	glass	 fiber‐mild	
steel	rough	pair	takes	less	time	to	stabilize.	
	
Figure	 6	 shows	 comparison	 of	 the	 variation	 of	
friction	 coefficient	 with	 normal	 load	 for	 gear	
fiber‐mild	 steel	 smooth,	 gear	 fiber‐mild	 steel	
rough,	 glass	 fiber‐mild	 steel	 smooth	 and	 glass	
fiber‐mild	steel	rough	sliding	pairs.	Curves	of	this	
figure	 are	 drawn	 from	 steady	 values	 of	 friction	
coefficient	 shown	 in	Figs.	2‐5	 for	gear	 fiber‐mild	
steel	 smooth,	 gear	 fiber‐mild	 steel	 rough,	 glass	
fiber‐mild	steel	smooth	and	glass	fiber‐mild	steel	
rough	 sliding	 pairs,	 respectively	 (to	 ensure	 the	
reliability	 of	 test	 results,	 each	 test	was	 repeated	
five	 times	 and	 curves	 1‐3	 of	 Figs.	 2‐5	 represent	
average	 value	 of	 five	 experiments).	 It	 is	 shown	
that	 the	 friction	 coefficient	 varies	 from	 0.147	 to	
0.108,	0.195	to	0.127,		0.167	to		0.123	and	0.225	
to	 0.135	with	 the	 variation	 of	 normal	 load	 from	
10	 to	 20	N	 for	 for	 gear	 fiber‐mild	 steel	 smooth,	
gear	 fiber‐mild	steel	rough,	glass	 fiber‐mild	steel	
smooth	 and	 glass	 fiber‐mild	 steel	 rough	 sliding	
pairs,	 respectively.	 From	 the	 obtained	 results,	 it	
can	 be	 seen	 that	 the	 coefficient	 of	 friction	
decreases	with	 the	 increase	 in	applied	 load.	 It	 is	
known	that	tribological	behavior	of	polymers	and	
polymer	composites	can	be	associated	with	their	
viscoelastic	 and	 temperature‐related	 properties.	
Sliding	 contact	 of	 two	 materials	 results	 in	 heat	
generation	 at	 the	 asperities	 and	hence	 increases	
in	 temperature	 at	 the	 frictional	 surfaces	 of	 the	
two	 materials	 which	 influences	 the	 viscoelastic	
property	 in	 the	 response	 of	 materials	 stress,	
adhesion	 and	 transferring	 behaviors	 [27].	 From	
the	obtained	 results,	 it	 can	also	be	 seen	 that	 the	
highest	 values	 of	 the	 friction	 coefficient	 are	
obtained	for	glass	fiber‐mild	steel	rough	pair	and	
the	 lowest	 values	 of	 friction	 coefficient	 are	
obtained	 for	 gear	 fiber‐mild	 steel	 smooth	 pair.	
The	values	of	friction	coefficient	of	gear	fiber‐mild	
steel	rough	pair	and	glass	fiber‐mild	steel	smooth	
pair	are	found	in	between	the	highest	and	lowest	
values.	 It	 is	noted	that	 the	 friction	coefficients	of	
gear	 fiber‐mild	 steel	 rough	 pair	 are	 higher	 than	
that	of	glass	fiber‐mild	steel	smooth	pair.	From	this	
figure,	 it	 is	also	found	that	at	 identical	conditions,	

the	 values	of	 friction	 coefficient	 of	 gear	 fiber	 and	
glass	 fiber	 sliding	 against	 smooth	 mild	 steel	
counterface	 is	 lower	 than	 that	 of	 gear	 fiber	 and	
glass	 fiber	 sliding	 against	 rough	 mild	 steel	
counterface.	 It	was	 found	 that	 after	 friction	 tests,	
the	 average	 roughness	 of	 gear	 fiber‐mild	 steel	
smooth	 pair,	 glass	 fiber‐mild	 steel	 smooth	 pair,	
gear	 fiber‐mild	 steel	 rough	 pair	 and	 glass	 fiber‐
mild	steel	rough	pair	varied	from	0.95‐1.35,	1.25‐
1.65	and	1.55‐1.75	and	1.67‐1.91	μm	respectively.	
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Fig.	 6.	 Friction	 coefficient	 as	 a	 function	 of	 Normal	
load	for	gear	and	glass	fiber	for	different	counterface	
surface	 conditions	 (Sliding	 velocity:	 1	 m/s,	 relative	
humidity:	70	%).	
	
Figures	 7,	 8,	 9	 and	 10	 show	 the	 variation	 of	
friction	 coefficient	 with	 the	 duration	 of	
rubbing	 at	 different	 sliding	 velocities	 for	 gear	
fiber‐mild	 steel	 smooth,	 gear	 fiber‐mild	 steel	
rough,	 glass	 fiber‐mild	 steel	 smooth	and	glass	
fiber‐mild	 steel	 rough	 sliding	 pairs,	
respectively	 at	 normal	 load	 15	N	 and	 relative	
humidity	70	%.	Curves	1,	2	and	3	of	Fig.	7	are	
drawn	 for	 sliding	 velocity	 1,	 1.5	 and	 2	 m/s	
respectively.	Curve	1	of	 this	 figure	shows	 that	
at	 initial	stage	of	rubbing,	the	value	of	 friction	
coefficient	 is	 0.087	 which	 increases	 almost	
linearly	 up	 to	 0.123	 over	 a	 duration	 of	 17	
minutes	 of	 rubbing	 and	 after	 that	 it	 remains	
constant	for	the	rest	of	the	experimental	time.	
At	 starting	 of	 experiment,	 the	 friction	 force	 is	
low	due	to	contact	between	superficial	layer	of	
pin	 and	 disc.	 As	 rubbing	 continues,	 the	 disc	
material	 becomes	 worn	 and	 reinforced	
material	 comes	 in	 contact	 with	 the	 pin,	
roughening	 of	 the	 disc	 surface	 causes	 the	
ploughing	 and	 hence	 friction	 coefficient	
increases	 with	 duration	 of	 rubbing.	 After	
certain	 duration	 of	 rubbing	 the	 increase	 of	
roughness	and	other	parameters	may	reach	to	
a	 certain	 steady	 value	 hence	 the	 values	 of	
friction	coefficient	remain	constant	for	the	rest	
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of	 the	 time.	 Curves	 2	 and	 3	 show	 that	 for	 the	
higher	 sliding	 velocity,	 the	 friction	 coefficient	
is	 more	 and	 the	 trend	 in	 variation	 of	 friction	
coefficient	 is	 almost	 the	 same	 as	 for	 curve	 1.	
From	 these	 curves,	 it	 is	 also	 observed	 that	
time	to	reach	steady	state	value	is	different	for	
different	sliding	velocity.	From	the	results	it	is	
found	that	gear	fiber‐mild	steel	smooth	pair	at	
sliding	velocity	1,	1.5	and	2	m/s	takes	to	reach	
constant	 friction	 17,	 14	 and	 11	 minutes	
respectively.	 It	 indicates	 that	 the	 higher	 the	
sliding	velocity,	time	to	reach	constant	friction	
is	 less.	 This	 may	 be	 due	 to	 the	 higher	 the	
sliding	 velocity,	 the	 surface	 roughness	 and	
other	parameters	take	less	time	to	stabilize.		
	
From	Figs.	8,	9	and	10,	it	can	be	observed	that	
the	 trends	 in	 variation	 of	 friction	 coefficient	
with	 the	 duration	 of	 rubbing	 are	 very	 similar	
to	 that	 of	 Fig.	 7	 but	 the	 values	 of	 friction	
coefficient	 are	 different	 for	 gear	 fiber‐mild	
steel	 rough	pair,	glass	 fiber‐mild	steel	 smooth	
pair	and	glass	fiber‐mild	steel	rough	pair.	
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Fig.	7.	Friction	coefficient	as	a	function	of	duration	of	
rubbing	 at	 different	 sliding	 velocities	 (normal	 load:	
15	N,	relative	humidity:	70	%,	test	sample:	gear	fiber,	
pin:	mild	steel,	smooth).	
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Fig.	8.	Friction	coefficient	as	a	function	of	duration	of	
rubbing	 at	 different	 sliding	 velocities	 (normal	 load:	

15	N,	relative	humidity:	70	%,	test	sample:	gear	fiber,	
pin:	mild	steel,	rough).	
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Fig.	9.	Friction	coefficient	as	a	function	of	duration	of	
rubbing	 at	 different	 sliding	 velocities	 (normal	 load:	
15	N,	relative	humidity:	70	%,	test	sample:	glass	fiber,	
pin:	mild	steel,	smooth).	
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Fig.	10.	Friction	coefficient	as	a	 function	of	duration	
of	rubbing	at	different	sliding	velocities	(normal	load:	
15	N,	relative	humidity:	70	%,	test	sample:	glass	fiber,	
pin:	mild	steel,	rough).	
	
Figure	11	shows	the	comparison	of	the	variation	
of	 friction	 coefficient	with	 sliding	 speed	 for	 gear	
fiber‐mild	 steel	 smooth,	 gear	 fiber‐mild	 steel	
rough,	 glass	 fiber‐mild	 steel	 smooth	 and	 glass	
fiber‐mild	steel	rough	sliding	pairs.	Curves	of	this	
figure	 are	 drawn	 from	 steady	 values	 of	 friction	
coefficient	shown	in	Figs.	7–10	for	gear	fiber‐mild	
steel	 smooth,	 gear	 fiber‐mild	 steel	 rough,	 glass	
fiber‐mild	steel	smooth	and	glass	fiber‐mild	steel	
rough	 sliding	 pairs.	 It	 is	 shown	 that	 the	 friction	
coefficient	 varies	 from	 0.123	 to	 0.165,	 0.143	 to	
0.189,	0.137	to	0.176	and	0.156	to	0.213	with	the	
variation	of	sliding	speed	from	1	to	2	m/s	for	gear	
fiber‐mild	 steel	 smooth,	 gear	 fiber‐mild	 steel	
rough,	 glass	 fiber‐mild	 steel	 smooth	 and	 glass	
fiber‐mild	 steel	 rough	 sliding	 pairs	 respectively.	
From	 these	 results	 it	 is	 seen	 that	 the	 values	 of	
friction	 coefficient	 increase	 almost	 linearly	 with	
sliding	 speed.	 These	 findings	 are	 in	 agreement	
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with	the	findings	of	Mimaroglu	et	al.	and	Unal	et	
al.	[27,28].	With	the	increase	in	sliding	speed,	the	
frictional	 heat	may	 decrease	 the	 strength	 of	 the	
materials	 and	 high	 temperature	 results	 in	
stronger	or	 increased	adhesion	with	pin	 [27,51].	
The	 increase	 of	 friction	 coefficient	 with	 sliding	
speed	can	be	explained	by	 the	more	adhesion	of	
counterface	 pin	 material	 on	 disc.	 From	 the	
obtained	 results,	 it	 can	 also	 be	 seen	 that	 the	
highest	 values	 of	 the	 friction	 coefficient	 are	
obtained	for	glass	fiber‐mild	steel	rough	pair	and	
the	 lowest	 values	 of	 friction	 coefficient	 are	
obtained	 for	 gear	 fiber‐mild	 steel	 smooth	 pair.	
The	values	of	friction	coefficient	of	gear	fiber‐mild	
steel	rough	pair	and	glass	fiber‐mild	steel	smooth	
pair	are	 found	in	between	the	highest	and	 lowest	
values.	 It	 is	 noted	 that	 the	 friction	 coefficients	 of	
gear	 fiber‐mild	 steel	 rough	 pair	 are	 higher	 than	
that	of	glass	fiber‐mild	steel	smooth	pair.	From	this	
figure,	 it	 is	also	found	that	at	 identical	conditions,	
the	 values	of	 friction	 coefficient	 of	 gear	 fiber	 and	
glass	 fiber	 sliding	 against	 smooth	 mild	 steel	
counterface	 is	 lower	 than	 that	 of	 gear	 fiber	 and	
glass	 fiber	 sliding	 against	 rough	 mild	 steel	
counterface.	 It	was	 found	 that	 after	 friction	 tests,	
the	 average	 roughness	 of	 gear	 fiber‐mild	 steel	
smooth	 pair,	 glass	 fiber‐mild	 steel	 smooth	 pair,	
gear	 fiber‐mild	 steel	 rough	 pair	 and	 glass	 fiber‐
mild	steel	rough	pair	varied	from	1.05‐1.45,	1.35‐
1.78	and	1.67‐1.88	and	1.76‐1.98	μm	respectively.	
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Fig.	11.	 Friction	 coefficient	 as	 a	 function	 of	 Normal	
load	for	gear	and	glass	fiber	for	different	counterface	
surface	 conditions	 (normal	 load:	 15	 N,	 relative	
humidity:	70	%).	
Variations	 of	 wear	 rate	 with	 normal	 load	 for	
gear	 fiber	 and	 glass	 fiber	 sliding	 against	
smooth	 or	 rough	 mild	 steel	 counterfaces	 are	
shown	 in	 Fig.	 12.	 The	 experimental	 results	
indicate	 that	 the	 curves	 drawn	 showing	 the	
variation	 of	 wear	 rate	 from	 0.815	 to	 1.453,	
1.135	 to	 1.751,	 0.929	 to	 1.553	 and	 1.638	 to	
2.35	mg/min	with	the	variation	of	normal	load	

from	 10	 to	 20	 N	 for	 gear	 fiber‐mild	 steel	
smooth,	 gear	 fiber‐mild	 steel	 rough,	 glass	
fiber‐mild	 steel	 smooth	 and	 glass	 fiber‐mild	
steel	 rough	 sliding	 pairs	 respectively.	 From	
these	 curves,	 it	 is	 observed	 that	 wear	 rate	
increases	with	 the	 increase	of	normal	 load	 for	
all	types	of	sliding	pairs.	When	the	load	on	the	
pin	 is	 increased,	 the	 actual	 area	 of	 contact	
would	 increase	 towards	 the	 nominal	 contact	
area,	 resulting	 in	 increased	 frictional	 force	
between	 two	 sliding	 surfaces.	 The	 increased	
frictional	force	and	real	surface	area	in	contact	
causes	higher	wear.	This	means	that	the	shear	
force	 and	 frictional	 thrust	 are	 increased	 with	
increase	of	applied	load	and	these	increased	in	
values	accelerate	the	wear	rate.	Similar	trends	
of	 variation	 are	 also	 observed	 for	mild	 steel–
mild	steel	couples	[52],	i.e	wear	rate	increases	
with	the	increase	in	normal	load.		
	
Figure	 12	 also	 shows	 the	 comparison	 of	 the	
variation	of	wear	rate	with	normal	load	for	gear	
fiber	and	glass	 fiber	under	different	pin	surface	
conditions.	From	the	obtained	results,	it	can	also	
be	seen	that	the	highest	values	of	the	wear	rate	
are	obtained	for	glass	fiber‐mild	steel	rough	pair	
and	the	lowest	values	of	wear	rate	are	obtained	
for	gear	fiber‐mild	steel	smooth	pair.		
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Fig.	12.	Wear	 rate	 as	 a	 function	 of	 Normal	 load	 for	
gear	and	glass	 fiber	for	different	counterface	surface	
conditions	(Sliding	velocity:	1	m/s,	relative	humidity:	
70	%).	
The	 values	of	wear	 rate	of	 gear	 fiber‐mild	 steel	
rough	pair	and	glass	fiber‐mild	steel	smooth	pair	
are	 found	 in	 between	 the	 highest	 and	 lowest	
values.	 It	 is	 noted	 that	 the	 wear	 rates	 of	 gear	
fiber‐mild	 steel	 rough	pair	 are	 higher	 than	 that	
of	 glass	 fiber‐mild	 steel	 smooth	 pair.	 From	 this	
figure,	 it	 is	 also	 found	 that	 at	 identical	
conditions,	 the	values	of	wear	rate	of	gear	 fiber	
and	glass	fiber	sliding	against	smooth	mild	steel	
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counterface	 is	 lower	 than	 that	of	gear	 fiber	and	
glass	 fiber	 sliding	 against	 rough	 mild	 steel	
counterface.	
	
Variations	of	wear	 rate	with	sliding	velocity	 for	
gear	fiber	and	glass	fibre	mating	with	smooth	or	
rough	mild	 steel	 counterfaces	 are	 presented	 in	
Fig.	 13.	 Curves	 show	 the	 variation	 of	wear	 rate	
from	1.167	to	1.778,	1.433	to	2.25,	1.258	to	1.95	
and	1.987	 to	2.78	mg/min	with	 the	variation	 in	
sliding	speed	from	1	to	3	m/s	for	gear	fiber‐mild	
steel	 smooth,	 gear	 fiber‐mild	 steel	 rough,	 glass	
fiber‐mild	 steel	 smooth	 and	 glass	 fiber‐mild	
steel	 rough	 sliding	 pairs	 respectively.	 From	
these	 curves,	 it	 is	 observed	 that	 wear	 rate	
increases	with	 the	 increase	 in	 sliding	 speed	 for	
all	 types	 of	 material	 combinations.	 These	
findings	 are	 in	 agreement	 with	 the	 findings	 of	
Mimaroglu	et	al	and	Suresha	et	al.	 [27,38].	This	
is	 due	 to	 the	 fact	 that	 duration	 of	 rubbing	 is	
same	for	all	sliding	velocities,	while	the	length	of	
rubbing	 is	more	 for	higher	 sliding	 velocity.	 The	
reduction	 of	 shear	 strength	 of	 the	material	 and	
increased	 true	 area	 of	 contact	 between	
contacting	 surfaces	may	 have	 some	 role	 on	 the	
higher	wear	rate	at	higher	sliding	velocity	[51].		
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Fig.	13.	Wear	rate	as	a	function	of	Normal	load	for	gear	
and	 glass	 fiber	 for	 different	 counterface	 surface	
conditions	(normal	load:	15	N,	relative	humidity:	70	%).	
Figure	 13	 also	 shows	 the	 comparison	 of	 the	
variation	 of	 wear	 rate	 with	 sliding	 velocity	 for	
different	 sliding	 pairs.	 From	 the	 obtained	
results,	 it	 can	 also	 be	 seen	 that	 the	 highest	
values	 of	 the	 wear	 rate	 are	 obtained	 for	 glass	
fiber‐mild	steel	rough	pair	and	the	lowest	values	
of	 wear	 rate	 are	 obtained	 for	 gear	 fiber‐mild	
steel	 smooth	 pair.	 The	 values	 of	 wear	 rate	 of	
gear	 fiber‐mild	steel	 rough	pair	and	glass	 fiber‐
mild	steel	smooth	pair	are	found	in	between	the	

highest	 and	 lowest	 values.	 It	 is	 noted	 that	 the	
wear	rates	of	gear	fiber‐mild	steel	rough	pair	are	
higher	than	that	of	glass	fiber‐mild	steel	smooth	
pair.	
	
From	this	figure,	it	is	also	found	that	at	identical	
conditions,	 the	values	of	wear	rate	of	gear	 fiber	
and	glass	fiber	sliding	against	smooth	mild	steel	
counterface	 is	 lower	 than	 that	of	gear	 fiber	and	
glass	 fiber	 sliding	 against	 rough	 mild	 steel	
counterface.	 It	 is	 due	 to	 the	 fact	 that	 rough	
surfaces	 generally	wear	more	 quickly	 and	 have	
higher	friction	coefficients	than	smooth	surfaces.	

	
	

4. CONCLUSION		
	

The	presence	of	normal	load	and	sliding	velocity	
indeed	 affects	 the	 friction	 force	 considerably.	
Within	the	observed	range,	the	values	of	friction	
coefficient	decrease	with	the	increase	in	normal	
load	while	friction	coefficients	increase	with	the	
increase	 in	 sliding	 velocity	 for	 gear	 fiber	 and	
glass	fiber	sliding	against	smooth	or	rough	mild	
steel	 pin.	 	 Friction	 coefficient	 varies	 with	 the	
duration	of	rubbing	and	after	certain	duration	of	
rubbing,	 friction	 coefficient	 becomes	 steady	 for	
the	 observed	 range	 of	 normal	 load	 and	 sliding	
velocity.	 Wear	 rates	 of	 gear	 fiber	 and	 glass	
mating	 with	 smooth	 or	 rough	 mild	 steel	
counterface	increase	with	the	increase	in	normal	
load	 and	 sliding	 velocity.	 The	 highest	 values	 of	
the	 friction	 coefficient	 are	 obtained	 for	 glass	
fiber‐mild	steel	rough	pair	and	the	lowest	values	
of	friction	coefficient	are	obtained	for	gear	fiber‐
mild	 steel	 smooth	 pair.	 The	 values	 of	 friction	
coefficient	 of	 gear	 fiber‐mild	 steel	 rough	 pair	
and	glass	fiber‐mild	steel	smooth	pair	are	found	
in	 between	 the	 highest	 and	 lowest	 values.	 The	
friction	 coefficients	 of	 gear	 fiber‐mild	 steel	
rough	 pair	 are	 higher	 than	 that	 of	 glass	 fiber‐
mild	 steel	 smooth	 pair.	 At	 identical	 conditions,	
the	values	of	friction	coefficient	of	gear	fiber	and	
glass	 fiber	 sliding	 against	 smooth	 mild	 steel	
counterface	 is	 lower	 than	 that	of	gear	 fiber	and	
glass	 fiber	 sliding	 against	 rough	 mild	 steel	
counterface.			
	
As	 (i)	 the	 friction	coefficient	decreases	with	 the	
increase	in	normal	load	(ii)	the	values	of	friction	
coefficient	 increase	with	 the	 increase	 in	 sliding	
velocity	 	 (iii)	 wear	 rate	 increases	 with	 the	
increase	in	normal	load	and	sliding	velocity	and	
(iv)	 the	 magnitudes	 of	 friction	 coefficient	 and	
wear	 rate	 are	 different	 for	 smooth	 and	 rough	
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counterface	pins	and	type	of	materials,	therefore	
maintaining	an	appropriate	level	of	normal	load,	
sliding	velocity	as	well	as	appropriate	choice	of	
counterface	 surface	 condition	 and	 tested	
materials,	friction	and	wear	may	be	kept	to	some	
lower	value	to	improve	mechanical	processes.	
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