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In	this	study,	the	two	dimensional	heat	conduction	problem	for	the	dry	
friction	 clutch	 disc	 is	modeled	mathematically	 analysis	 and	 is	 solved	
numerically	using	finite	element	method,	to	determine	the	temperature	
field	when	band	 contacts	occurs	between	 the	 rubbing	 surfaces	during	
the	operation	 of	an	automotive	 clutch.	Temperature	 calculation	have	
been	made	 for	 contact	 area	 of	 different	 band	width	 and	 the	 results	
obtained	compared	with	these	attained	when	complete	contact	occurs.	
Furthermore,	 the	 effects	 of	 slipping	 time	and	 sliding	 velocity	 function	
are	investigated	as	well.	Both	single	and	repeated	engagements	made	at	
regular	interval	are	considered.	
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1. INTRODUCTION		
	
Experience	 shows	 that	 most	 premature	 clutch	
failures	 can	 be	 attributed	 to	 excessive	 surface	
temperature	 generated	 during	 slipping.	 And	 to	
prevent	clutch	failure	before	expected	lifecycle	it	
is	 necessary	 to	 know	 the	 maximum	 surface	
temperature	 and	 how	 this	 depends	 on	 known	
conditions	 of	 loading,	 physical	 properties	 and	
dimensions	 of	 the	 clutch	 disc	 and	 degree	 of	 air	
cooling.	
	
Newcomb	 [1]	 derived	 the	 equations	 during	
slipping	 period	 to	 determine	 the	 energy	
dissipated	and	the	temperatures	reached	at	any	
instant	 during	 a	 single	 engagement	 of	 a	 clutch	

when	 its	 torque	 capacity	 is	 a	 function	 of	 time.	
Two	typical	torque‐time	variations	are	discussed	
and	 a	 comparison	 is	 made	 with	 the	 case	 when	
the	torque	is	assumed	to	be	constant.	
	
Anderson	 [2]	 introduced	 and	 discussed	 four	
automotive	friction	system	hot	spot	types.	These	
are	 asperity,	 focal,	 distortional,	 and	 regional.	
Friction	 material	 and	 metal	 counter	 surface	
wear	consequences	are	discussed,	as	they	relate	
to	 the	 different	 hot	 spotting	 types.	 Focal	 hot	
spots	 are	 emphasized.	 These	 may	 form	
martensite	on	the	cast	iron	drum	or	disk	rubbing	
surface.	 Such	 hot	 spots,	 if	 not	 prevented,	 can	
provide	 a	 root	 cause	 for	 unacceptable	
performance	or	durability	in	automotive	friction	
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systems.	 Computer	 studies,	 using	 a	 two‐
dimensional	model,	are	used	to	complement	the	
experimental	 studies	 of	 critical	 hot	 spots	 and	
determine	 hot	 spot	 thermal	 flux	 limits.	 Surface	
melting	 and	 known	 requirements	 for	 the	
formation	 of	 martensite	 are	 used	 to	 establish	
bounds	from	the	computer	analysis.	
	
Lee	 and	 Barber	 [3]	 investigated	 the	
thermoelastic	 instability	 in	 automotive	 disk	
brake	 systems	 and	 focusing	 on	 the	 effect	 of	 a	
finite	disk	thickness.	A	finite	layer	model	with	an	
anti‐symmetric	 mode	 of	 deformation	 can	
estimate	 the	 onset	 of	 instability	 observed	 in	
actual	 disk	 brake	 systems.	 Also	 some	 effects	 of	
system	 parameters	 on	 stability	 are	 found	 to	
agree	well	to	experimental	observations.	
	
Lee	 and	 Barber	 [4]	 investigated	 thermoelastic	
instability	 in	 an	 automotive	 disk	 brake	 system	
experimentally	 under	 drag	 braking	 conditions.	
The	 onset	 of	 instability	 is	 clearly	 identifiable	
through	 the	 observation	 of	 non‐uniformities	 in	
temperature	 measured	 using	 embedded	
thermocouples.	 A	 stability	 boundary	 is	
established	 in	 temperature/speed	 space,	 the	
critical	 temperature	 being	 attributable	 to	
temperature	 dependence	 of	 the	 brake	 pad	
material	properties.	It	is	also	found	that	the	form	
of	 the	 resulting	unstable	perturbations	or	eigen	
functions	 changes	 depending	 upon	 the	 sliding	
speed	and	temperature.	
	
Yevtushenko	 e	 al	 [5]	 were	 applied	 one‐
dimensional	 transient	 heat	 conductivity	 to	 study	
the	 contact	 problem	 of	 a	 sliding	 of	 two	 semi‐
spaces,	 which	 induces	 effects	 of	 friction,	 heat	
generation	 and	 water	 during	 braking.	 In	 the	
present	 temperature	 analysis	 the	 capacity	 of	 the	
frictional	 source	 on	 the	 contact	 plane	 dependent	
on	the	time	of	braking.	The	problem	solved	exactly	
using	the	Laplace	transform	technique.	Numerical	
results	 for	 the	 temperature	 are	 obtained	 for	 the	
different	 values	 of	 the	 input	 parameter,	 which	
characterize	 the	 duration	 of	 the	 increase	 of	 the	
contact	pressure	during	braking	 from	zero	 to	 the	
maximum	 value.	 An	 analytical	 formula	 for	 the	
abrasive	wear	of	 the	 contact	plane	 is	obtained	 in	
the	 assumption,	 that	 the	 wear	 coefficient	 is	 the	
linear	function	of	the	contact	temperature.	
	
Decuzzi	 and	 Demelio	 [6]	 studied	 the	 thermo‐
mechanical	damage	of	clutches	and	brakes	due	to	
thermoelastic	 instability	 (TEI),	 which	 leading	 to	

localized	 surface	 burning	 of	 frictional	 materials,	
permanent	 distortions	 of	metal	 plates,	 vibrations	
and	noise.	In	this	work,	the	analytical	formulation	
proposed	 before,	 rephrased	 in	 dimensionless	
form,	is	employed	to	estimate	the	influence	of	the	
material	properties	on	the	minimum	critical	speed	
of	sliding	systems.	Two	cases	of	practical	 interest	
are	 considered,	 an	 automotive	 multi‐disc	 clutch	
(dissimilar	 materials	 case)	 and	 a	 carbon–carbon	
brake/clutch	 for	 high	 speed	 applications	 (similar	
materials	 case).	 In	 both	 cases	 the	 relative	
importance	in	altering	the	minimum	critical	speed	
and	 the	direction	 of	 change	 of	 each	parameter	 is	
examined	 and	 a	 comparison	 with	 previous	
available	 solutions	 is	 performed.	 A	 simple	 and	
sufficiently	 accurate	 relation	 is	 found	 to	 hold	
between	the	sliding	V	or	rotating	Ω	critical	speed	
and	the	arbitrary	material	parameter	ξ,	
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This	can	be	employed	 in	estimating	 the	optimum	
set	of	material	properties	for	sliding	systems.	
	
Yun	 [7]	 used	 finite	 element	method	 to	 solve	 the	
problem	 involving	 thermoelasto	 dynamic	
instability	(TEDI)	in	frictional	sliding	systems.	The	
resulting	 matrix	 equation	 contains	 a	 complex	
eigenvalue	that	represents	the	exponential	growth	
rate	 of	 temperature,	 displacement,	 and	 velocity	
fields.	 Compared	 to	 the	 thermoelastic	 instability	
(TEI)	in	which	eigenmodes	always	decay	with	time	
when	 the	 sliding	 speed	 is	 below	 a	 critical	 value,	
numerical	 results	 from	 TEDI	 have	 shown	 that	
some	 of	 the	 modes	 always	 grow	 in	 the	 time	
domain	at	any	sliding	speed.	As	a	result,	when	the	
inertial	 effect	 is	 considered,	 the	 phenomenon	 of	
hot	 spotting	 can	actually	occur	at	 a	 sliding	 speed	
below	the	critical	TEI	threshold.	The	finite	element	
method	 presented	 here	 has	 obvious	 advantages	
over	 analytical	 approaches	 and	 transient	
simulations	of	the	problem	in	that	the	stabilities	of	
the	 system	 can	 be	 determined	 for	 an	 arbitrary	
geometry	 without	 extensive	 computations	
associated	 with	 analytical	 expressions	 of	 the	
contact	 condition	 or	 numerical	 iterations	 in	 the	
time	domain.	
	
Grze	[8]	investigated	the	temperature	fields	of	the	
solid	disc	brake	during	short,	emergency	braking.	
The	 standard	 Galerkin	 weighted	 residual	
algorithm	was	used	to	discretize	the	parabolic	heat	
transfer	 equation.	 The	 finite	 element	 simulation	
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for	two‐dimensional	model	was	performed	due	to	
the	 heat	 flux	 ratio	 constantly	 distributed	 in	
circumferential	direction.	Two	types	of	disc	brake	
assembly	 with	 appropriate	 boundary	 and	 initial	
conditions	were	developed.	Results	of	calculations	
for	 the	 temperature	expansion	 in	axial	and	radial	
directions	are	presented.	The	effect	of	the	angular	
velocity	 and	 the	 contact	 pressure	 evolution	 on	
temperature	rise	of	disc	brake	was	investigated.	It	
was	found	that	presented	finite	element	technique	
for	 two‐dimensional	 model	 with	 particular	
assumption	in	operation	and	boundary	conditions	
validates	with	so	far	achievements	in	this	field.	
	
Jing	 et	 al	 [9]	 studied	 the	 disadvantages	 of	 the	
thermo‐elastic	 instability	 (TEI)	 due	 to	 frictional	
heat	 energy	 at	 the	 rough	 sliding	 interfaces.	 The	
main	shortcoming	of	existing	literatures	is,	 in	our	
opinion,	 that	 it	 do	 not	 deduce	 theoretical	
mathematics	model	 taken	 into	account	 the	 rough	
surface	 profile	 with	 the	 heat	 convection	 and	
radiation	 boundary	 conditions	 in	 temperature	
field.	 We	 now	 present	 our	 finite	 element	 model	
that	we	believe	can	much	reduce	this	shortcoming.	
In	 the	 full	 paper,	 we	 explain	 our	model	 in	 some	
detail;	in	this	abstract,	we	just	add	some	pertinent	
remarks	 to	 naming	 the	 two	 topics.	 Topic	 1	 is:	
contact	model	of	rough	surface	profile.	Topic	2	is:	
temperature	field	model	of	brake	disks.	Finally	we	
perform	simulations	in	ANSYS.	The	results,	shown	
in	 the	 full	 paper,	 show	 the	 importance	 of	 the	
roughness	 in	 the	 temperature	 field	 and	 the	
practicability	of	the	model.	
	
Hwang	 et	 al	 [10]	 determined	 the	 temperature	
distribution,	thermal	distortion,	and	thermal	stress	
in	a	solid	disc	by	 three	dimensional	modeling	 for	
repeated	braking.	Braking	is	applied	four	times	in	
the	present	study;	the	vehicle	is	decelerated	from	
100	to	50	kph	with	0.6	g,	after	which	the	velocity	is	
again	accelerated	to	100	kph.	In	order	to	simulate	
the	 friction	 heat	 behavior	 accurately	 in	 repeated	
braking,	the	moving	heat	source,	which	is	defined	
by	 time	 and	 space	 variable,	 is	 applied	 on	 the	
frictional	 surface.	 The	 temperature	 field	 and	
thermal	stress	in	the	disc	present	a	non‐uniformity	
characteristic	because	of	 the	moving	heat	 source.	
Temperature	 and	 thermal	 stress	 of	 the	 point	 on	
the	 frictional	 surface	 of	 the	 brake	 disc	 present	
fluctuation	 in	 the	 braking	 operation.	 The	 coning	
angle	due	 to	 the	non‐uniform	 radial	 temperature	
distribution	 varies	 with	 temperature.	 Thermal	
fatigue	is	also	discussed	in	this	article.	
	

Grze	 [11]	 developed	 a	 transient	 thermal	 analysis	
to	examine	temperature	expansion	in	the	disc	and	
pad	volume	under	simulated	operation	conditions	
of	single	braking	process.	This	complex	problem	of	
frictional	 heating	 has	 been	 studied	 using	 finite	
element	 method	 (FEM).	 The	 Galerkin	 algorithm	
was	used	to	discretize	the	parabolic	heat	transfer	
equation	 for	 the	 disc	 and	 pad.	 FE	 model	 of	
disc/pad	system	heating	with	respect	 to	constant	
thermo‐physical	 properties	 of	 materials	 and	
coefficient	of	friction	was	performed.	The	frictional	
heating	 phenomenon	 with	 special	 reference	 to	
contact	conditions	was	investigated.	
	
An	 axisymmetric	 model	 was	 used	 due	 to	 the	
proportional	relation	between	the	intensity	of	heat	
flux	perpendicular	to	the	contact	surfaces	and	the	
rate	of	heat	transfer.	The	time	related	temperature	
distributions	 in	 axial	 and	 radial	 directions	 are	
presented.	 Evolution	 of	 the	 angular	 velocity	 and	
the	contact	pressure	during	braking	was	assumed	
to	be	nonlinear.	Presented	transient	finite	element	
analysis	 facilitates	 to	 determine	 temperature	
expansion	in	special	conditions	of	thermal	contact	
in	axisymmetric	model.	
	
Fan	et	al	[12]	developed	a	three‐dimensional	finite	
element	 model	 for	 thermal‐structure	 coupling	
analysis	 of	 a	 type	 of	 disc	 brake	 was	 established.	
And	 using	 the	 direct‐coupling	 technique	 in	 finite	
element	method,	 an	 emergent	working	 condition	
of	 braking	 process	 was	 analyzed,	 getting	 the	
distribution	 laws	 of	 the	 stress	 field	 and	 the	
temperature	 field,	 and	 the	 interacting	 laws	
between	the	stress	field	and	the	temperature	field.	
The	 results	 correspond	 to	 the	 actual	 application,	
thus	providing	guidance	for	the	designing	and	the	
fatigue	analysis	of	disc	brakes.	
	
In	 this	 paper	 a	 finite	 element	 method	 has	 been	
applied	 to	 calculate	 the	 heat	 generated	 on	 the	
surfaces	 of	 friction	 clutch	 and	 temperature	
distribution	 for	 case	 of	 bands	 contact	 between	
flywheel	 and	 clutch	 disc,	 and	 between	 the	 clutch	
disc	and	pressure	plate	(one	bad	central	and	two	
bands)	 and	 compared	 with	 case	 of	 full	 contact	
between	 surfaces	 for	 single	 engagement	 and	
repeated	 engagements.	 Furthermore,	 this	 paper	
shows	 effect	 of	 pressure	 capacity	 on	 the	
temperature	field,	when	the	pressure	is	a	function	
of	time,	three	kinds	of	pressure	variation	with	time	
(constant,	linear	and	parabolic)	are	presented.	
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2. MATHMATICAL	MODEL	
	
Consider	the	basic	power	transmission	shown	in	
Fig.	1,	consisting	of	two	inertias	I1	and	I2	initially	
rotating	at	unequal	angular	velocities	Ω1	and	Ω2	
and	 at	 any	 instant	 time	 t,	 rotating	 at	 different	
angular	 velocities	 ω1	 and	 ω2	 respectively	
throughout	the	clutch	engagement.	The	moment	
of	inertias	for	input	and	output	are	I1	and	I2.	And	
T1	 is	 input	 torque	 and	 T2	 is	 output	 torque.	
During	slipping	the	torque	capacity	of	the	clutch	
varies	as	a	function	of	time	ϕ	(t).	It	assumed	that	
the	 torques	 T1	 and	 T2	 are	 constant	 since	 any	
variation	 in	 these	 values	 is	 likely	 to	 be	 small	
compared	 to	 the	 uncertainty	 of	 their	measured	
values.	 Then	 the	 equations	 of	 motion	 for	 the	
system	are	expressed	as	follows	[1]:	

											
dt

d
ItT 1

11 )(
  																												(1)	

											
dt

d
ITt 2

22)(
  																										(2)	

	
	
	
	
	
	
	
	

Fig.	1	Basic	power	transmission	system.	
	
Integrating	 Eq	 (1)	 and	 Eq	 (2),	 and	 using	 the	
initially	 conditions	 (at	 t=0,	 ω1=Ω1	 and	 ω2=Ω2),	
where	Ω1	and	Ω2	are	the	angular	velocity	initially	
for	flywheel	and	output	end	of	shaft	respectively:	
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And	the	relative	angular	velocity	(ωr=ω1‐	ω2)	is:		
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If	 there	 is	 no	 external	 torques	 (M=0),	 then	 the	
eq.	(5)	will	be:		

																			 ro

t

r dttP   
0
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The	 slipping	 period	 ts	 determined	 by	 putting	
(ωr=0)	in	eq.	(6)	yield:		

																								 
t

ro dttP
0

)( 		 														(7)	

The	 simplest	 torques	 (under	 uniform	 wear	
condition)	variation	with	time	during	slipping	[1]:		
	
1.	Constant	torque	(or	pressure)	
	
The	pressure	for	this	case	is:	

																						 optp maxmax )(  																														(8)	

then:	
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And	it	can	be	found	the	slipping	time	ts	from	Eq.	
(7),	and	relative	angular	velocity	ωr	form	Eq.	(6):	
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2. 	Pressure	increasing	linearly	
	
The	pressure	function	is:	
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By	the	same	procedures	in	item	(1)	it	can	be	fund	
the	slipping	time	and	relative	angular	velocity:	
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3.	Pressure	parabolically	increasing	
	
The	pressure	function	is:	
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The	slipping	time	and	relative	angular	velocity	are:	
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During	 the	 slipping	 period,	 the	 thermal	 heat	
fluxes	with	time	on	the	clutch	at	any	instant	per	
unit	area	(W/m2)	is	[11]:	

																	 ic rttpftq )()()(  	 											(20)	

where	 fc	 is	 the	 heat	 partition	 ratio	 which	
imposes	 division	 of	 heat	 entering	 the	 clutch,	
pressure	 plate	 and	 flywheel	 (assume	 the	 same	
material	 properties	 for	 the	 flywheel	 and	
pressure	plate),	and	is	given	as	follows	[12].	
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where	 k	 is	 the	 thermal	 conductivity,	 ρ	 is	 the	
density	and	c	 is	the	specific	heat.	All	values	and	
parameters,	 which	 refer	 to	 the	 axial	 cushion,	
friction	material,	 flywheel	and	pressure	plate	 in	
the	 following	 considerations,	 will	 have	 bottom	
indexes	cu,	c,	f	and	p	respectively.	Then,	the	heat	
flux	on	the	clutch	disc	for	constant	pressure	is:		
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The	heat	flux	on	the	clutch	disc	for	linear	pressure	is:	
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And	the	heat	flux	on	the	clutch	disc	for	parabolic	
pressure	is:	
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The	 maximum	 heat	 fluxes	 occur	 at	 (t=0),	

)}3/({ stt  and	 (t=0.467	 ts)	 corresponding	 to	

the	 constant	 pressure,	 linear	 pressure	 and	
parabolic	pressure	respectively.	
	
Figs.	2,	3	and	4	shows	the	pressure,	relative	slip	speed	
and	heat	flux	varies	with	time	during	the	slipping.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Fig.	 2.	 Variation	 of	 [pmax(t)/pmaxo]	 with	 time	 for	
constant,	linearly	and	parabolically	increasing	torque.	
(ts	is	the	slipping	time	when	the	torque	is	constant).	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Fig.	3	Variation	of	[ωr(t)/	ωro]	with	(t/ts)	for	constant,	
linearly	and	parabolically	increasing	torque.	
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Fig.	4	Variation	of	[q(t)/fc	μ	pmaxo	ωro	ri]	with	(t/ts)	for	
constant,	linearly	and	parabolically	increasing	torque.	
	
The	 total	 thermal	 energy	 dissipated	 during	 a	
single	engagement	for	constant	pressure	is:	

											 srooicTc tpArfQ  max2

1
 														(25)	

where,	A	 )]([ 22
io rrnA   	 is	the	total	area	for	

contact	 and	 n	 number	 of	 contact	 surfaces.	 The	
total	thermal	energy	during	a	single	engagement	
for	linear	pressure	is:	

															 srooicTl tpArfQ  max4

1
 												(26)	

And	 the	 total	 thermal	 energy	 during	 a	 single	
engagement	for	parabolic	pressure	is:	

														 srooicTp tpArfQ  max3

1
 													(27)	

When	the	engagement	process	starts	 for	clutch,	
the	 heat	 will	 generated	 between	 the	 surfaces	
due	 to	 the	 slipping	 (result	 of	 the	 difference	 in	
velocities	 between	 the	 driving	 shaft	 and	 driven	
shaft).	 The	 heat	 generated	will	 dissipate	 by	 the	
conduction	between	 friction	 clutch	 components	
and	by	convection	to	environment.	Due	to	short	
time	 for	 slipping	 process	 the	 radiation	 is	
neglected.	It	can	be	obtained,	that	the	temperature	
distribution	 by	 building	 two‐dimensional	 models	
to	present	the	frictional	heating	process	for	friction	
clutch.	 The	 starting	 point	 for	 the	 analysis	 of	 the	
temperature	 field	 in	 the	 friction	 clutch	 is	 the	
parabolic	 heat	 conduction	 equation	 in	 the	
cylindrical	coordinate	system	{r‐radial	coordinate	
(m),	θ‐circumferential	coordinate	(rad),	and	z‐axial	
coordinate	(m)}	[13],	which	is	centered	in	the	axis	
of	the	disc	and	z	points	to	it’s	thickness	(Fig.	5‐a).	
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where	α	is	the	thermal	diffusivity,	α=k/ρ	c,	ri	and	
ro	are	the	inner	and	outer	radius	for	of	the	clutch	
disc.		Hence	the	distribution	of	heat	flow	will	be	
uniform	 in	 circumferential	 direction,	 which	
means	 that,	 the	 temperature	 and	heat	 flow	will	
not	 vary	 in	 θ	 direction,	 and	 thus	 the	 heat	
conduction	equation	reduces	to:	
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Fig.	(5‐a).	The	friction	clutch	disc	(axisymmetric).	
	
The	boundary	and	initial	conditions	are	given	as	
follows	for	all	cases	during	engagement:	
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where	Ta	is	the	ambient	temperature	and	h	is	the	
convection	heat	transfer	coefficient.		
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The	initial	temperature	is,			
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The	boundary	 condition	 for	 contact	 surface,	 for	
the	first	case	(full	contact	area)	is	(Fig.	5‐b),	

soi

cttzc

ttrrr

tq
z

T
K

ccu









0,

);()2/( 																			(36)			

	
	
	
	
	
	
Fig.	(5‐b).	FE	model	with	boundary	conditions	for	case	(1).	
	
For	the	second	and	third	cases	(one	central	band	
of	contact),	 the	boundary	conditions	 for	contact	
surface	are	(Fig.	5‐c),	
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Fig.	 (5‐c).	 FE	 model	 with	 boundary	 conditions	 for	
cases	(2	&	3).		
	
For	 the	 fourth	 and	 fifth	 cases	 (two	 band	 of	
rubbing	 contact),	 the	 boundary	 conditions	 for	
contact	surface	are	(Fig.	5‐d),	
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Fig.	 (5‐d).	 FE	 model	 with	 boundary	 conditions	 for	
cases	(4	&	5).	
	
The	details	of	each	the	case	is	outlined	in	Table	(1). 
	
Table	1.	Description	of	r1	and	r2	for	all	cases.	

Case	
No.	

Description	
Contact
area	%	

1	 Full	contact:	r1=‐,	r2=‐		 100	

2	

One	band	of	contact:	
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Two	bands	of	contact:	
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Two	bands	of	contact:	
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3. FINITE	ELEMENT	FORMULATION	
	
The	 object	 of	 this	 section	 is	 to	 develop	
approximate	 time‐stepping	 procedures	 for	
axisymmetric	 transient	 governing	equations.	 For	
this	to	happen,	the	following	boundary	and	initial	
conditions	are	considered:	

																								 Tp onTT  		 																												(41)	

																				 ha onTThq  )( 																											(42)	

																								
qcu onqq  	 	 												(43)	
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																 0 ttimeonTT o 																													(44)	

where	Tp	is	the	prescribed	temperature,	ΓΤ,	Γh	,	Γq,	
are	 arbitrary	 boundaries	 on	which	 temperature,	
convection	and	heat	flux	are	prescribed.	In	order	
to	obtain	matrix	 form	of	Eq.	 (25)	the	application	
of	 standard	 Galerkin’s	 approach	 was	 conducted	
[15].	 The	 temperature	 was	 approximated	 over	
space	as	follows:	
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where:	Ni	are	shape	functions,	n	is	the	number	of	
nodes	 in	 an	 element,	 Ti(t)	 are	 time	 dependent	
nodal	 temperatures.	 The	 standard	 Galerkin’s	
approach	 of	 Eq.	 (25)	 leads	 to	 the	 following	
equation:	
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Using	integration	by	parts	of	Eq.	(42)	we	obtain,	
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Integral	form	of	boundary	conditions:	
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Substituting	 Eq.	 (44)	 and	 spatial	 approximation	
Eq.	(41)	to	Eq.	(43)	we	obtain:	
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where,	i	and	j	represent	the	nodes.	Equation	(45)	
can	be	written	in	matrix	form:	

																				       RTK
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Where	[C]	 is	the	heat	capacity	matrix,	[K]	 is	the	
heat	conductivity	matrix,	and	{R}	is	the	thermal	
force	matrix,	or:	
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where,	
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or	in	matrix	form,	
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Table	2.	Thermophysical	properties	of	materials	and	
operations	conditions	for	the	thermal	analysis.	

Parameters	 Values
Inner	radius,	ri [m] 0.085
Outer	radius,	ro [m] 0.135
Moments	of	inertia	for	the	engine	[kg‐m2]	 1
Moments	of	inertia	for	the	
transmission/vehicle	[kg‐m2]	

5	

Torque	T	[Nm] 587.47
Thickness	of	friction	material,	tc	[m]	 0.002
Thickness	of	the	axial	cushion,	tcu	[m]	 0.001
Maximum	pressure,	pmaxo [MPa]	 0.25
Coefficient	of	friction,	μ 0.4
Number	of	friction	surfaces,	n	 2
Maximum	angular	slipping	speed,	ωro	
(rad/sec)	

220	

Conductivity	for	friction	material,	Kc	(W/mK)	 0.75
Conductivity	for	pressure	plate	&	flywheel,	
Kp	&	Kf	(W/mK)	

56	

Density	for	friction	material,	ρc	(kg/m3)	 1300
Density	for	pressure	plate	&	flywheel,	ρp	&ρf	
(kg/m3)	

7200	

Specific	heat	for	friction	material,	cc	(J/kgK)	 1400
Specific	heat	for	pressure	plate	&	flywheel,		
cp	&	cf	(J/kgK)	

450	

Time	step,		Δt	(s)	 0.002
The	slipping	time	(constant	pressure),	ts1	 0.3121
The	slipping	time	(linear	pressure),	ts2	 0.624
The	slipping	time	(parabolic	pressure),	ts3	 0.468
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In	 order	 to	 determine	 temperature	 distribution	
of	 this	 transient	 heat	 conduction	 problem,	 the	
fine	 mesh	 element	 was	 essential.	 Moreover,	
when	the	iterative	method	of	the	given	problem	
is	 employed,	 then	 a	 relatively	 short	 time	 is	
needed	 for	 the	 calculations.	 In	 the	 next	 step	 of	
the	 study,	 the	 Crank‐Nicolson	 method	 was	
selected	as	an	unconditionally	stable	scheme.	In	
this	 paper	 ANSYS	 software	 was	 used	 to	
investigate	 transient	 thermoelastic	 analysis	
behaviour	 of	 dry	 friction	 clutch.	 In	 all	
computations	for	the	friction	clutch	model,	it	has	
been	 assumed	 a	 homogeneous	 and	 isotropic	
material	 and	 all	 parameters	 and	 materials	
properties	are	listed	in	Table	2.	
	
The	 heat	 transfer	 coefficient	 was	 changed	 as	
function	 of	 the	 relative	 surface	 velocity	
according	 to	 Balazs	 et	 al	 [14],	 in	 a	 stationary	
position,	the	value	specified	was	(5W/m2	K),	and	
at	1500	 r.p.m	15,	20	 ,35	and	40	W/(m2	K)	 as	 a	
function	of	the	relative	surface	speed	in	m/s.	The	
eight‐noded	 thermal	 element	 (PLANE77)	 was	
used	 in	 this	 analysis;	 the	 element	 has	 one	
temperature	degree	of	 freedom	at	each	node	as	
the	 temperature	 is	 scalar.	 A	 mesh	 sensitivity	
study	 was	 done	 to	 choose	 the	 optimum	 mesh	
from	computational	accuracy	point	of	view.	
	
	
4. RESULTS	AND	DISCUSSIONS	
	
In	this	paper	the	temperature	distribution	of	the	
friction	 clutch	 disc	 for	 the	 bands	 contact	 has	
been	investigated.		Five	cases	involving	different	
regions	 and	 percentage	 area	 of	 rubbing	 in	
contact	have	been	considered,	with	assuming	for	
each	 configuration	 dissipating	 the	 same	 total	
energy	 during	 an	 engagement.	 Full	 contact	 of	
area	of	clutch	disc	for	the	first	case,	50	%	and	75	
%	of	central	band	contact	area	is	considered	for	
case	2	and	case	3	respectively,	whereas	the	two	
bands	 of	 50	%	 and	 75	%	 contact	 area	 used	 for	
case	4	and	case	5	respectively.	
	
Figure	 6	 presents	 the	 variation	 of	 temperature	
with	 time	 for	 single	 engagement	 and	 different	
types	of	pressure	(case‐2)	at	mean	radius	rm.	It	
can	be	 seen	 from	 this	 figure	 that	 the	maximum	
effect	 on	 temperature	 change	 occurs	 when	
applied	 constant	 pressure.	 The	 maximum	 ratio	
for	 temperature	 differences	 for	 (Δconst.	
pressure/Δlinear	 pressure)	 and	 (Δconst.	 pressure/Δ	 parabolic	
pressure)	are	found	to	be	1.24	and	1.1	respectively.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Fig.	6.	Variation	of	temperature	with	time	at	rm	(Case	2).	
	
Figures	7,	8	and	9	demonstrate	 the	variation	of	
surface	 temperatures	 with	 time	 for	 different	
contact	 area	 and	 different	 types	 of	 pressure.	 In	
all	figures,	it	was	observed	that	the	temperature	
increases	 when	 the	 contact	 area	 decreases	
(pressure	 increases).	 The	 temperature	 is	
proportional	to	the	applied	pressure	and	time	of	
slipping,	 and	 the	 temperature	 increases	 when	
the	 slipping	 time	 and	 contact	 area	 decrease.	
When	the	contact	area	decreases	from	100	%	to	
50	%	 the	maximum	 increases	 in	 the	 difference	
temperature	is	approximately	50	%	for	all	types	
of	pressures.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Fig.	 7.	 Variation	 of	 temperature	 with	 time	 at	 rm	
(Constant	pressure).	
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Fig.	 8.	 Variation	 of	 temperature	 with	 time	 at	 ri	
(Linear	pressure).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Fig.	 9.	 Variation	 of	 temperature	 with	 time	 at	 ro	
(Parabolic	pressure).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Fig.	 10.	 Variation	 of	 temperature	 with	 radius	 at	
t=0.1545	s	(constant	pressure).	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Fig.	 11.	 Variation	 of	 temperature	 with	 radius	 at	
t=0.492	s	(Linear	pressure).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Fig.	 12.	 Variation	 of	 temperature	 with	 radius	 at	
t=0.333	s	(parabolic	pressure).	
	
Figures	 10,	 11	 and	 12	 exhibit	 the	 surface	
temperature	 in	 the	 radial	 direction	 (between	
inner	 radius	 ri	 and	 outer	 radius	 ro).	 It	 can	 be	
noted	 that	 the	 temperature	 increases	 in	 the	
contact	 area	 of	 friction	material	 (band	 contact)	
and	 no	 change	 in	 the	 other	 region	 of	 nominal	
frictional	interface.	This	situation	due	to	the	fact	
of	 using	 low	 values	 of	 thermal	 conductivity	 for	
friction	materials.	The	 thermal	variation	will	be	
just	 on	 the	 contact	 area,	 and	 which	 can	 be	
neglected	for	other	regions	of	nominal	frictional	
interface	in	case	of	band	contact.	
	
The	normal	operation	of	 friction	clutch	makes	
repeated	 engagements	 and	 the	 maximum	
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temperature	 during	 this	 operation	 is	 very	
important.	 Temperature	 calculation	 has	 been	
made	 for	 repeated	 engagements	 made	 at	
regular	 intervals	 of	 time	 for	 the	 same	 energy	
dissipations.	 The	 time	 between	 engagements	
is	taken	5	seconds.	Figures	13,	14	and	15	show	
the	 variation	 of	 temperature	 with	 time	 at	 rm	
for	different	types	of	pressure	(constant,	linear	
and	 parabolic)	 during	 10	 repeated	
engagements.	 The	 maximum	 temperatures	
reached	 after	 10	 engagements	 are	 431	 K,	
415.3K	 and	 423.3K	 corresponding	 to	 the	
constant	 pressure,	 linear	 pressure	 and	
parabolic	pressure	respectively.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Fig.	 13.	 Variation	 of	 temperature	 with	 time	 at	 rm	
(Repeated	engagements‐	constant	pressure‐	case	2).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Fig.	 14.	 Variation	 of	 temperature	 with	 time	 at	 rm	
(Repeated	engagements‐	linear	pressure‐case	2).	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Fig.	 15.	 Variation	 of	 temperature	 with	 time	 at	 rm	
(Repeated	engagements‐	parabolic	pressure‐	case	2).	
	
	
5. CONCLUSIONS	AND	REMARKS	
	
In	this	paper	 transient	thermal	analysis	of	dry	
friction	 clutch	 disc	 for	 a	 single	 engagement	
and	 repeated	 engagements	 based	 on	 the	
uniform	 wear	 theory	 was	 performed.	 Two‐
dimensional	 model	 was	 built	 to	 obtain	 the	
numerical	 simulation	 for	 band	 contact	 of	 disc	
clutch	 during	 slipping.	 The	 results	 show	 that	
both	 evolution	 of	 slipping	 time	 and	 contact	
area	 ratio	 are	 intensely	 effect	 disc	 clutch	
temperature	 fields	 in	 the	 domain	 of	 time.	
Proposed	 finite	 element	 modeling	 technique	
for	 three	 types	 of	 thermal	 loads	 depend	 on	
type	 of	 pressure	 (constant,	 linear	 and	
parabolic),	and	different	region	and	location	of	
band	contact.	 It	 can	be	 seen,	 that	 the	result	of	
temperature	 distribution	 for	 constant	
pressure	type	is	higher	than	the	other	types	of	
pressure,	 because	 of	 the	 total	 quantity	 of	
thermal	 load	 is	 applied	 in	 short	 time	 with	
compared	 to	 other	 types	 of	 thermal	 loads.	
Also,	 it	 can	 be	 noticed	 the	 uniform	
temperature	on	the	contact	surface	because	of	
the	thermal	load	is	constant	in	radial	direction.	
The	maximum	temperature	for	constant,	linear	
and	parabolic	pressures	occur	at	(t	=	0.5ts1)	 (t	
=	0.78ts2)	and	(t	=	0.71ts3)	respectively.	
	
The	 study	 of	 temperature	 field	 of	 contact	
surfaces	 during	 repeated	 engagements	
operation	is	necessary	to	give	indication	about	
the	 maximum	 temperature,	 because	 of	 the	
temperature					will					increase			rapidly					when		
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increases	 number	 of	 times	 of	 engagements,	
and	 finally	 likely	 the	 temperature	 exceed	 the	
safe	 temperature,	 it's	 to	 leading	 the	 friction	
material	 to	 failure,	 before	 the	 expected	
lifetime	 of	 the	 clutch.	 The	 percentage	 of	
increases	 in	maximum	 temperature	 are	 found	
73.2	%,	 89.1	%	 and	 80.2	%	 corresponding	 to	
the	 constant	 pressure,	 linear	 pressure	 and	
parabolic	 pressure	 respectively	 when	 the	
number	 of	 engagement	 variation	 from	 (1	 to	
10),	 it	 is	 clear	 that	 the	 value	 of	 percentage	
increase	 of	 temperature	 for	 linear	 pressure	
type	is	higher	the	other	types	of	pressure,	this	
due	 to	 the	 total	 time	 for	 engagements	 when	
applied	 linear	 pressure	 is	 greater	 than	 the	
total	time	of	engagements	for	other	types.	
	
The	 damaged	 or	 incorrectly	 machined	
flywheel	 (large	 deformation,	 thermal	 cracks	
...etc)	 causes	 many	 of	 problems,	 one	 of	 them	
focusing	 the	 pressure	 on	 small	 regions	 of	
nominal	 frictional	 interface	 (e.g.	 bands	 and	
spots),	for	this	it’s	essential	when	fitting	a	new	
clutch	 to	 a	 vehicle	 to	 ensure	 that	 the	 flywheel	
is	 in	perfect	condition	 in	order	 to	prevent	any	
possible	 clutch	 problems.	 The	 minor	 scoring	
and	 grooving	 marks	 in	 flywheel	 can	 be	
removed	 by	 machining,	 but	 if	 the	 contact	
surface	 is	deeply	scored,	 the	 flywheel	must	be	
replaced.	
	
Scoring	and	grooving	prevent	 the	driven	plate	
from	 contacting	 the	 flywheel	 evenly,	 resulting	
in	clutch	shudder	and	slipping	problems.	
	
The	band	contact	in	clutches	is	considered	one	
of	 the	 disadvantages,	 which	 produce	 by	
damaged	 flywheel,	 this	 type	of	 contact	 lead	 to	
failure	 for	 the	 friction	 clutch	 material	 before	
estimated	time	of	 failure.	The	failure	occurs	in	
band	contact	due	to	concentration	of	frictional	
heating	 over	 zone	 smaller	 than	 frictional	
interface;	this	leads	to	a	significant	increase	in	
the	values	of	pressure,	and	then	will	generated	
temperatures	higher	than	the	expected	values.	
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