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	 A	B	S	T	R	A	C	T	

The	 high	 thermal	 stresses,	 generated	 between	 the	 contacting	
surfaces	 of	 the	 clutch	 system	 (pressure	 plate,	 clutch	 disc	 and	
flywheel)	 due	 to	 the	 frictional	 heating	 during	 the	 slipping,	 are	
considered	to	be	one	of	the	main	reasons	of	clutch	 failure.	A	 finite	
element	 technique	 has	 been	 used	 to	 study	 the	 transient	
thermoelastic	 phenomena	 of	 a	 dry	 clutch.	 The	 effect	 of	 the	
boundary	 conditions	 on	 the	 contact	 pressure	 distribution,	 the	
temperature	 field	and	the	heat	 flux	generated	along	the	 frictional	
surfaces	are	 investigated.	Analysis	has	been	 completed	using	 two	
dimensional	 axisymmetric	 model	 that	 was	 used	 to	 simulate	 the	
clutch	 elements.	 ANSYS	 software	 has	 been	 used	 to	 perform	 the	
numerical	calculation	in	this	paper.	
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1. INTRODUCTION		
	
At	 beginning	 of	 the	 engagement	 of	 the	 clutch	
disc	the	slipping	will	occur	between	the	contact	
surfaces	 and	 the	 energy	 will	 be	 dissipated	 by	
frictional	 heating,	 generated	 at	 the	 sliding	
interface,	 causing	 an	 increase	 in	 the	 surface	
temperature	 of	 the	 contacting	 surfaces	 of	 the	
clutch	 elements	 (flywheel,	 clutch	 disc	 and	
pressure	 plate).	 The	 surface	 temperature	 and	
the	 forces	 involved	 are	 sufficiently	 to	 produce	
non‐uniform	 deformation	 which	 affects	 the	
pressure	distribution	and	the	mating	surfaces.	
	
Abdullah	 and	 Schlattmann	 [1‐7]	 investigated	 the	
temperature	 field	 and	 the	 energy	 dissipated	 for	

the	 dry	 friction	 clutch	 during	 a	 single	 and	
repeated	engagement	assuming	uniform	pressure	
and	 uniform	wear	 conditions.	 They	 also	 studied	
the	effect	of	pressure	between	contact	surface	on	
the	 temperature	 field	 and	 the	 internal	 energy	 of	
clutch	 disc	 varying	 with	 time	 using	 two	
approaches;	 heat	 partition	 ratio	 approach	 to	
compute	 the	 heat	 generated	 for	 each	 part	
individually	whereas	the	second	applies	the	total	
heat	generated	for	the	whole	model	using	contact	
model.	 Furthermore,	 they	 studied	 the	 effect	 of	
engagement	 time	 and	 sliding	 velocity	 function,	
thermal	 load	 and	 dimensionless	 disc	 radius	
(inner	 disc	 radius/outer	 disc	 radius)	 on	 the	
thermal	 behaviour	 of	 the	 friction	 clutch	 in	 the	
beginning	of	engagement.	
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2. FINITE	ELMENT	ANALYSIS	
	
The	 finite	 element	 simulation	 of	 the	 clutch	
system	 involves	 constructing	 two	 different	
models,	 the	 first	 of	 which	 is	 used	 to	 solve	 the	
thermoelastic	problem	to	yield	the	displacement	
field	 and	 the	 contact	 pressure	 distribution.	 The	
other	model	 is	 used	 to	 solve	 the	 transient	 heat	
conduction	problem	to	account	for	the	change	in	
the	temperature	field.		
	
The	 two	models	 are	 however	 coupled	 since	 the	
contact	pressure	from	the	first	model	is	needed	to	
define	the	frictional	heat	flux	in	the	second	model.	
Furthermore,	the	temperature	field	from	the	heat	
conduction	model	is	required	for	the	computation	
of	 the	 contact	 pressure.	 To	 account	 for	 the	
coupling	 and	 the	 time	 variation	 of	 the	 sliding	
speeds,	 the	 clutch	 engagement	 time	 is	 divided	

into	 small	 time	 steps.	 At	 each	 time	 step,	 the	
instantaneous	 nodal	 temperatures	 are	 used	 in	 a	
thermoelastic	 contact	 solution	 to	 determine	 the	
contact	 pressure	 distribution.	 The	 pressure	
distribution	 is	 assumed	 to	 remain	 constant	
during	 the	 subsequent	 time.	 Figure	 1	 shows	 the	
schematic	 diagram	 for	 the	 finite	 element	
simulation	of	a	coupled‐field	problem	of	clutches.	
	
Figure	 2	 shows	 the	 interfaces	 of	 two	 adjacent	
subregions	 i	 and	 j	 of	 elastic	 bodies.	 The	 elastic	
contact	 problem	 is	 treated	 as	 quasi‐static	 with	
standard	 unilateral	 contact	 conditions	 at	 the	
interfaces.	The	 following	constraint	conditions	of	
displacements	are	imposed	on	each	interface	[8]:	

0,  Pifww ji 																					(1)	

0,  Pifww ji 																					(2)	
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Fig.	1.	Schematic	diagram	of	FE	simulation.	
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(a)	     (b)	 	
Fig.	 2. Contact	 model	 for	 the	 (a)	 elastic	 and	 (b)	 heat	
conduction	problem	in	two	adjacent	subregions.	
	
Where	 P	 is	 the	 normal	 pressure	 on	 the	 friction	
surfaces.	 The	 radial	 component	 of	 the	 sliding	
velocity	 resulting	 from	 the	 deformations	 is	
considerably	 smaller	 than	 the	 circumferential	
component.	 Therefore,	 the	 frictional	 forces	 in	
radial	 direction	 on	 the	 friction	 surfaces	 are	
disregarded	 in	 this	 study.	 Figure	 2	 (b)	 shows	
thermal	phenomena	of	two	adjacent	subregions	of	
bodies.	The	interfacial	thermal	boundary	conditions	
depend	 on	 the	 state	 of	 mechanical	 contact.	 Two	
unknown	 terms	qni	 and	qnj	 exist	 on	each	 interface.	
To	 fully	 define	 the	 heat	 transfer	 problem,	 two	
additional	conditions	are	required	on	each	contact	
interface.	 If	 the	 surfaces	 are	 in	 contact,	 the	
temperature	 continuity	 condition	 and	 the	 heat	
balance	condition	are	imposed	on	each	interface:	

0,  PifTT ji 																								(3)	

( ), 0n ni njq P r q q q if P        			(4)	

where	μ	and	ω	are	the	coefficients	of	friction	and	
angular	 sliding	 velocity,	 respectively.	 Then,	 using	
the	 aforementioned	 conditions,	 equations	 of	 one	
node	from	each	pair	of	contact	nodes	are	removed.	
If	 the	 surfaces	 are	 not	 in	 contact,	 the	 separated	
surfaces	are	treated	as	an	adiabatic	condition:	

0,0  Pifqqq njni 												(5)	

Assume	 the	 sliding	 angular	 velocity	 decreases	
linearly	with	time	as:	

s
s

o tt
t

t
t  0),1()(  						(6)																										

The	 distribution	 of	 the	 normal	 pressure	 P	 in	 Eq.	
(4)	 can	 be	 obtained	 by	 solving	 the	 mechanical	
problem	occurring	in	the	disc	clutch.	The	first	step	
in	 this	 analysis	 is	 the	 modeling;	 due	 to	 the	
symmetry	 in	 the	 geometry	 (frictional	 lining	
without	grooves)	and	boundary	conditions	of	 the	
friction	clutch	(taking	into	consideration	the	effect	
of	pressure	and	thermal	load	due	to	the	slipping),	
two‐dimensional	axisymmetric	FEM	can	be	used	to	

represent	the	contact	between	the	clutch	elements	
during	the	slipping	period	as	shown	in	Fig.	3.	The	
axisymmetric	 finite	 element	 models	 (elastic	 and	
thermal)	 of	 friction	 clutch	 system	with	 boundary	
conditions	are	shown	in	Fig.	4.	In	Fig.	4.a,	h	is	the	
flow	of	heat	to	the	surrounding	due	to	convection	
and	Qgen.f,	Qgen.c	and	Qgen.p	are	 the	amounts	of	heat	
flux	 that	 enter	 to	 the	 flywheel,	 clutch	 disc	 and	
pressure	plate	respectively.	Four	different	cases	of	
boundary	conditions	are	 taken	 into	consideration	
in	 this	work	 (Fig.	 4b‐e);	 restricting	 two	 nodes	 at	
the	backside	of	flywheel	(case‐1),	restricting	all	the	
backside	 of	 flywheel	 (case‐2),	 restricting	 three	
nodes	 (at	 inner,	 mean	 and	 outer	 radii)	 at	 the	
backside	of	flywheel	(case‐3)	and	restricting	10	%	
of	 the	 backside	 of	 flywheel	 (case‐4).	 In	 all	
computations	 for	 the	 friction	 clutch	 model,	
material	 has	 been	 assumed	 homogeneous	 and	
isotropic	 and	 all	 parameters	 and	 material	
properties	 are	 listed	 in	 Table	 1.	 Analysis	 is	
conducted	by	assuming	there	are	no	cracks	in	the	
contact	surfaces.	
	
Table	1.	The	properties	of	materials	and	operations.	

Parameters	 Values	

Inner	radius	of	friction	material	&	axial	cushion,	ri	[m]	 0.06298

Outer	radius	of	friction	material	&	axial	cushion,	ro	[m] 0.08721

Thickness	of	friction	material	[m],	tl	 0.003	

Thickness	of	the	axial	cushion	[m],	taxi.	 0.0015	

Inner	radius	of	pressure	plate			[m],	rip	 0.05814

Outer	radius	of	pressure	plate		[m],	rop	 0.09205

Thickness	of	the	pressure	plate	[m],	tp		 0.00969

Inner	radius	of	flywheel			[m],	rif	 0.04845

Outer	radius	of	flywheel			[m],	rof	 0.0969	

Thickness	of	the	flywheel	[m],	tf	 0.01938

Pressure,	p	[MPa]	 1	

Coefficient	of	friction,	μ	 0.2	

Number	of	friction	surfaces,	n	 2	

Young’s	modulus	for	friction	material,	El	[GPa]	 0.30	

Young’s	modulus	for	pressure	plate,	flywheel	&	axial	
cushion,	(Ep,	Ef,	and	Eaxi),	[Gpa]	

125	

Poisson’s	ratio	for	friction	material,	 0.25	

Poisson’s	ratio	for	pressure	plate,	flywheel	&	axial	cushion	 0.25	

Density	for	friction	material,	(kg/m3),	ρl	 2000	

Density	for	pressure	plate,	flywheel	&	axial	cushion,	
(kg/m3),	(ρp,	ρf,	and	ρaxi)	

7800	

Specific	heat	for	friction	material,	[J/kg	K]	 120	

Specific	heat	for	pressure	plate,	flywheel	&	axial	
cushion,	[J/kg	K]	

532	

Conductivity	for	friction	material,	[W/mK	]	 1	

Conductivity	for	pressure	plate,	flywheel	&	axial	
cushion	[W/mK]	

54	

Thermal	expansion	for	friction	material	and	steel	[K‐1]	 12e‐6	

Slipping	time,	ts	[s]	 0.4	
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Fig.	3.	The	Contact	model	for	clutch	system.	
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Fig.	 4a.	 FE	 models	 with	 the	 boundary	 conditions,	
(Thermal	model).	
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Fig.	4b.	 FE	model	with	boundary	 conditions	 (elastic	
model,	case‐1).	
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Fig.	4c.	 FE	model	with	 boundary	 conditions	 (elastic	
model,	case‐2).	

3. RESULTS	AND	DISCUSSIONS	
	
The	numerical	model	 is	simulated	using	a	 finite	
element	 method	 to	 investigate	 the	 effect	 of	
boundary	 conditions	 on	 the	 thermoelastic	
behavior	 of	 clutch	 system.	 The	 simulations	
consist	of	two	models;	the	first	one	is	the	elastic	
contact	 model	 which	 is	 used	 to	 calculate	 the	
pressure	 distribution	 between	 contact	 surfaces.	
The	second	model	 is	the	heat	conduction	model	
used	 to	 calculate	 the	 temperature	 field	 during	
the	slipping	period.	
 
Figures (5-12) show the contact pressure 
distribution on the contacting surfaces of both sides 
of clutch disc (flywheel and pressure plate sides) at 
selected time intervals (0.12s, 0.24s, 0.36s, 0.4 s). It 
can be seen from these results that the maximum 
value of the contact pressure increases with time 
but in the other side the contact area decreases with 
time. For both sides of the clutch disc at all time 
intervals, contact pressure of case-4 is higher than 
all other cases. In general, pressure distribution on 
friction surfaces undergoes changes due to thermal 
deformation which is known as thermoelastic 
transition. This process of growth of non-
uniformity in contact pressure distribution can be 
unstable and then TEI (thermoelastic instability) 
phenomenon takes place in the sliding system. The 
same behaviour of contact pressure for cases (1, 2 
and 3) can be observed and the difference between 
them is very small that can be neglected (less than 
0.09%). The maximum values of contact pressure 
of case-4 are found to be 3.38 MPa and 3.29 MPa 
corresponding to flywheel and pressure plate sides 
respectively. 
 
Figures (13-20) demonstrate the variation of the 
heat flux with clutch disc radius for both sides of 
clutch disc at selected time intervals. It can be seen, 
at beginning of the engagement of clutch (t=0.04s), 
the maximum value of heat flux occurs near ro and 
the minimum value occurs at ri for all the cases 
except case-4. It has a different behaviour. The heat 
flux is semi-uniform for case-4 at this time period. 
After short time from the beginning of engagement 
the thermal deformation will affect the contact 
pressure distribution. So, the heat flux distribution 
will also change.  The heat flux area decreases with 
time for all the cases but for case-4 the heat flux 
area is even smaller than the other cases. The 
maximum values of the heat flux for all the cases 
occur near the inner radius, and are found to be 7.4 
MW/m2 and 7.44 MW/m2 corresponding to the 
flywheel and pressure plate sides respectively.     
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Fig.	5.	Contact	pressure	distribution	at	flywheel	side	
with	different	boundary	conditions	at	t	=	0.12	s.	
	

	
Fig.	6.	Contact	pressure	distribution	at	flywheel	side	
with	different	boundary	conditions	at	t	=	0.24	s.	
	

 
Fig.	7.	Contact	pressure	distribution	at	flywheel	side	
with	different	boundary	conditions	at	t	=	0.36	s.	

	
Fig.	8.	Contact	pressure	distribution	at	flywheel	side	
with	different	boundary	conditions	at	t	=	0.40	s.	
	

	
Fig.	9.	Contact	pressure	distribution	at	pressure	plate	
side	with	different	boundary	conditions	at	t	=	0.12	s.	
	

	
Fig.	10.	Contact	pressure	distribution	at	pressure	plate	
side	with	different	boundary	conditions	at	t	=	0.24	s.	
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Fig.	11.	Contact	pressure	distribution	at	pressure	plate	
side	with	different	boundary	conditions	at	t	=	0.36	s.	
 

	
Fig.	12.	Contact	pressure	distribution	at	pressure	plate	
side	with	different	boundary	conditions	at	t	=	0.40	s.	
	

	
Fig.	13.	 Heat	 flux	 distribution	 at	 flywheel	 side	with	
different	boundary	conditions	at	t	=	0.04	s.	

	
Fig.	14.	 Heat	 flux	 distribution	 at	 flywheel	 side	with	
different	boundary	conditions	at	t	=	0.16	s.	
	

 
Fig.	 15.	 Heat	 flux	 distribution	 at	 flywheel	 side	
with	different	boundary	conditions	at	t	=	0.28	s.	
	

 
Fig.	16.	 Heat	 flux	 distribution	 at	 flywheel	 side	with	
different	boundary	conditions	at	t	=	0.36	s.	
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Fig.	17.	Heat	 flux	distribution	at	pressure	plate	 side	
with	different	boundary	conditions	at	t	=	0.04	s.	
	

	
Fig.	18.	Heat	 flux	distribution	at	pressure	plate	 side	
with	different	boundary	conditions	at	t	=	0.16	s.	
	

 
Fig.	19.	Heat	 flux	distribution	at	pressure	plate	 side	
with	different	boundary	conditions	at	t	=	0.28	s.	

	
Fig.	20.	Heat	 flux	distribution	at	pressure	plate	 side	
with	different	boundary	conditions	at	t	=	0.36	s.	
	
Figures	 (21‐24)	 show	 the	 temperature	
distribution	 on	 the	 friction	 surfaces	 of	 clutch	
disc	 at	 different	 selected	 time	 interval.	 The	
temperature	 distributions	 on	 the	 friction	
surface	 for	 the	 cases	 (1,	 2	 and	 3)	 have	 the	
same	 trend	 (difference	 between	 them	 is	 very	
small	 and	 can	 be	 neglected).	 The	 maximum	
values	 of	 temperature	 occur	 at	 t	 =	 0.24s	 and	
are	 found	to	be	464.9	K	and	489.9	K	 for	cases	
(1,	 2	 and	 3)	 and	 case‐4,	 respectively.	 The	
maximum	 values	 of	 temperature	 occur	 at	 r	 =	
0.238ro	for	all	cases.	
	

	
Fig.	21.	Temperature	distribution	along	the	radius	at	
flywheel	side	at	t	=	0.24	s.		
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Fig.	22.	Temperature	distribution	along	the	radius	at	
flywheel	side	at	t	=	0.40	s.		
	

	
Fig.	23.	Temperature	distribution	along	the	radius	at	
pressure	plate	side	at	t	=	0.24	s.	
	

	
Fig.	24.	Temperature	distribution	along	the	radius	at	
pressure	plate	side	at	t	=	0.40	s.	

	
Fig.	25.	Maximum	 temperature	 history	 for	 different	
boundary	conditions	of	clutch	system.	
	
Figure	 25	 shows	 the	 maximum	 temperature	
history	 in	 the	 clutch	 system.	 The	 maximum	
values	 of	 temperature	 occur	 at	 t=	 0.6ts	 for	 all	
cases.	 The	 maximum	 values	 of	 temperature	
during	the	slipping	period	are	found	to	be	465	K	
and	 492.8	 K	 for	 cases	 (1,	 2	 and	 3)	 and	 case‐4,	
respectively.	
	
	
4. CONCLUSIONS	
	
In	 this	 paper,	 the	 transient	 thermoelastic	
analysis	 of	 clutch	 system	 (single	disc)	 has	 been	
performed.	 Two‐dimensional	 thermo‐elastic	
coupling	 model	 has	 been	 applied	 to	 the	
thermoelastic	 contact	 with	 frictional	 heat	
generation.	The	effect	of	boundary	conditions	on	
thermoelastic	 behaviour	 was	 investigated.	 The	
same	sliding	speed	has	been	assumed	for	all	the	
cases.	
	
It	 can	 be	 concluded	 that	 the	 thermoelastic	
behaviour	of	 clutch	 is	 affected	by	 the	boundary	
conditions	 and	 the	 magnitude	 of	 this	 affect	 is	
more	considerable	when	assuming	the	boundary	
condition	 as	 case‐4.	 The	 thermoelastic	 effect	
starts	 in	 the	 clutch	 system	 at	 t	 =	 0.05	 s.	 The	
maximum	 values	 of	 temperature	 occur	 in	 the	
flywheel	 side	 at	 t	 ≈	 0.24	 s	 (0.6ts)	 during	 the	
slipping	period	of	0.4	s.	The	maximum	values	of	
contact	 pressure	occur	near	 the	 inner	 radius	 at	
t=0.36	 s	 for	 all	 the	 cases.	This	 study	presents	 a	
valuable	 design	 tool,	 to	 investigate	 the	 effect	 of	
boundary	 conditions	 on	 the	 thermoelastic	
behaviour	 of	 the	 clutch	 system	 during	 the	
beginning	of	its	engagement.	
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