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1. INTRODUCTION		
	
Ni	 chemical	 coatings	 are	 obtained	 through	 the	
method	 of	 electro‐less	 chemical	 deposition	
known	in	the	literature	as	„Electroless	Niсkel”.		
	
From	 chemical	 point	 of	 view,	 chemical	
deposition	 is	 a	 deoxidization	 process	 which	
develops	 between	 positive	 charged	 metal	 ions	
Мz+	and	negative	electrons	е:	

z
eM ze Me   		 	 (1)	

where	z	is	the	valence	of	the	metal	ion.		
	
Coatings	 obtained	 through	 chemical	 deposition	
differ	 in	 the	 methods	 for	 procurement	 of	 the	
electrons	necessary	for	the	deoxidization.	
	
In	 the	 galvanic	 (electrolyte)	 methods,	 electric	
current	is	passed	through	the	solution	of	the	metal	
salt	(electrolyte)	and	the	metal	ions	are	reduced	to	
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the	corresponding	metal	atom	Ме	on	the	cathode	
(the	 coated	detail).	 The	 cathode	 renders,	 and	 the	
anode	 obtains	 electrons,	 which	 are	 provided	 by	
external	source	–	the	electric	current.		
	
At	 chemical	Ni	 deposition	 an	 external	 source	 is	
not	 needed	 for	 providing	 electrons.	 The	
necessary	 electrons	 are	 obtained	 as	 a	 result	 of	
chemical	 reactions	 going	 between	 the	 solution	
and	 the	 surface	 of	 the	 detail	 to	 be	 coated.	 As	 a	
consequence	 the	 Ni	 metal	 ions	 of	 the	 solution	
obtain	 a	 given	 number	 of	 electrons	 depending	
on	their	valence	passing	thus	in	state	of	neutral	
atoms	 (Ме).	 The	 atoms	 gradually	 build	 the	
crystal	grid	of	the	coating.	 	 In	this	case,	the	role	
of	„supplier	of	electrons”	is	realized	by	different	
substances	 (chemical	 agents)	 called	 reducers	
(deoxidizers)	from	the	solution	[1].	
	
Imbedding	 of	 micro‐	 or	 nano‐sized	 particles	 of	
various	 natures	 in	 the	 Ni	 matrix	 changes	 the	
physico‐mechanical	 and	 the	 tribological	
characteristics	of	the	coatings.		
In	 connection	 with	 the	 improvement	 of	 the	
resource	 of	 tribosystems,	 a	 special	 interest	 for	
nanotribology	 represent	 Ni	 chemical	 coatings	
containing	 in	 their	 structure	 particles	 of	 the	
nanosize	 scale	 [2,3].	 Imbedding	 of	 nano‐sized	
particles	in	the	solution	for	the	production	of	the	
Ni	coating	brings	changes	in	the	character	of	the	
contact	 interactions	 on	 three	 levels:	 interaction	
of	 nanoparticles	 with	 Ni	 ions	 into	 the	 solution	
with	 the	electrons,	 interaction	of	 the	built	atom	
with	 the	 surface	 of	 the	 detail	 and	 formation	 of	
the	crystal	grid	of	the	coating	[4].	
	
The	 purpose	 of	 the	 present	 work	 is	 to	 study	
some	characteristics	of	contact	friction	and	wear	
for	 Ni	 chemical	 coatings,	 without	 and	 with	

nanodiamond	 particles	 of	 different	 size:	 4	 nm,		
100	nm,	200	nm	and	250	nm.		
	
	
2. NICKEL	CHEMICAL	COATINGS	
	
Ten	types	of	coatings	are	studied,	gathered	 in	5	
series	with	number	given	in	Table	1.	Each	series	
has	 its	 designation	 in	 Latin	 letters,	
correspondingly:	

‐ N	‐	Nickel	coating	without	nanoparticles;		

‐ nD	 ‐	 Nickel	 coating	 with	 diamond	
nanoparticles.	

	
The	 number	 after	 the	 letter	 D	 indicates	 the	
average	 size	 of	 the	 nanoparticles	 –	 4	 nm,	 100	
nm,	 200	 nm,	 250	 nm.	 Each	 series	 includes	 two	
groups	of	coatings:	first	group	‐	coatings	without	
heat	 treatment	 designated	 by	 the	 sign	 (‐)	 and	
second	 group	 ‐	 with	 heat	 treatment	 at	 360оС	
during	6	hours	designated	by	the	sign	(+).	
	
	
3. ABRASIVE	WEAR		
	
a. Device	and	procedure	
	
Experimental	 study	 of	 abrasive	 wear	 of	 Ni	
coatings	 is	 realized	 by	 means	 of	 the	 test	 rig	
TABER	 ABRASER	 according	 to	 the	 kinematical	
scheme	„disk‐on‐disk”	(Fig.1).	
The	 specimen	 1	 (the	 body)	 with	 deposited	
coating	 2	 is	 in	 the	 shape	 of	 disk	 and	 is	 fixed	
appropriately	 on	 carrying	 horizontal	 disk	 3	
drived	 by	 electrical	 motor	 4	 with	 a	 constant	
rotational	 speed	  =1[s‐1]=const. The	 counter‐
body	 5	 is	 an	 abrasive	 disk	 (roller)	 of	 special	
material	CS	10	mounted	on	horizontal	axis	6	 in	
the	 device	 8,	 by	 means	 of	 which	 is	 set	 the

	
Table	1.	Description	of	the	specimens	with	coatings	of	chemical	Ni	containing	nanodiamond	particles.		

№	of	
series	

Designation	
of	the	series	

	
№	
	

Designation	of	
the	coating	

Composition	
of	the	coating	

Thickness	of	the	coating	before	wear,	
h1,		µm	

I	 N	
1	 N‐	 Ni 25,56	
2	 N+	 Ni+ToC 11,28	

II	 nD4	
3	 nD4‐	 Ni+Di	4	nm 23,22	
4	 nD4+	 Ni+Di	4	nm +ToC 8	

III	 nD100	
5	 nD100‐	 Ni+Di	100	nm 27,94	
6	 nD100+	 Ni+Di	100	nm +ToC 7,12	

IV	 nD200	
7	 nD200‐	 Ni+Di	200	nm 26,24	
8	 nD200+	 Ni+Di	200	nm +ToC 9,14	

V	 nD250	
9	 nD250‐	 Ni+Di	250	nm 30,5	
10 nD250+	 Ni+Di	250	nm +ToC 8,7	
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desired	 normal	 load	 Р	 in	 the	 contact	 zone	 К.	
Thus,	 the	 body	 1	 and	 the	 counter‐body	 5	 are	
located	 on	 two	 crossed	 axes.	 Because	 of	 the	
constant	rotational	speed	of	 the	body	1	and	the	
constant	 nominal	 contact	 pressure ap ,	 the	

friction	 in	the	contact	zone	К	supports	constant	
speed	of	rotation	of	the	counter‐body	5.	
	
The	 procedure	 of	 the	 experimental	 study	 on	
abrasive	 wear	 is	 realized	 in	 the	 following	
sequence	of	operations:	

‐ clean‐up,	 cleaning	 of	 lubricants	 and	 drying	 of	
the	equal	specimens.	The	specimens	represent	
disks	of	diameter	100	mm	and	thickness	3	mm	
with	the	deposited	coatings;		

‐ measuring	of	 roughness	of	 the	contact	 surfaces	
of	the	specimens	before	and	after	wear;	

‐ measuring	of	 specimens	mass	mo	before	and	
its	mass	mi	 after	 a	 given	 friction	 path	 L 	 by	
electronic	balance	WPS	180/C/2	of	 accuracy	
0,1	mg.	At	every	measurement	the	specimens	
are	cleaned	with	appropriate	solution	against	
static	electricity;		

‐ measuring	 of	 coating	 thickness	 	 h1	 before	
wear	 and	 h2	 after	 wear	 by	 means	 of	 Pocket	
LEPTOSKOP	2021	Fe	device	in	10	points	of	the	
surface;	 the	 average	 value	 is	 taken	 for	
thickness	of	the	sample;	

‐ the	 specimen	 1	 is	 fixed	 on	 the	 carrying	
horizontal	 disk	 3;	 then	 the	 normal	 load	Р	 is	
set.	The	friction	path	 L 	 is	determined	by	the	
number	 of	 cycles	 read	 by	 the	 revolution	
counter	8.	

	
The	 procedure	 of	 the	 experimental	 study	 on	
abrasive	 wear	 is	 realized	 in	 the	 following	
sequence	of	operations:	

‐ clean‐up,	cleaning	of	lubricants	and	drying	of	
the	 equal	 specimens.	 The	 specimens	

represent	 disks	 of	 diameter	 100	 mm	 and	
thickness	3	mm	with	the	deposited	coatings;		

‐ measuring	of	roughness	of	the	contact	surfaces	
of	the	specimens	before	and	after	wear;	

‐ measuring	of	 specimens	mass	mo	before	and	
its	mass	mi	 after	 a	 given	 friction	 path	 L 	 by	
electronic	balance	WPS	180/C/2	of	 accuracy	
0,1	mg.	At	every	measurement	the	specimens	
are	cleaned	with	appropriate	solution	against	
static	electricity;		

‐ measuring	 of	 coating	 thickness	 	 h1	 before	
wear	 and	 h2	 after	 wear	 by	 means	 of	 Pocket	
LEPTOSKOP	2021	Fe	device	in	10	points	of	the	
surface;	 the	 average	 value	 is	 taken	 for	
thickness	of	the	sample;	

‐ the	specimen	1	is	fixed	on	the	carrying	horizontal	
disk	3;	then	the	normal	load	Р	is	set.	The	friction	
path	 L 	 is	 determined	 by	 the	 number	 of	 cycles	
read	by	the	revolution	counter	8.	

	
Abrasive	 wear	 for	 all	 coatings	 is	 obtained	 by	
fixed	 equal	 operating	 conditions	 –	 nominal	
contact	 pressure	 given	with	 the	 normal	 load	Р,	
average	 sliding	 speed	 V	 and	 parameters	 of	 the	
abrasive	surface.	
	
The	 characteristics	 of	 the	 experiment	 are	 given	
in	Table	2.	
	
Table	2.	Working	parameters	in	the	experiment.	

Apparent	contact	area	 0, 26aA  cm2	

Nominal	contact	pressure	 9, 42ap  N/cm2	

Average	sliding	speed	 22,3V  cm/s	

Abrasive	material	 CS	10	

	
The	 parameters	 of	 mass	 and	 linear	 wear	 are	
studied:	 speed,	 wear	 intensity,	 absolute	 and	
relative	wearresistance	and	their	change	in	time,	
respectively	the	friction	path.	

	

	 	 	
Fig.	1.	TABER	ABRASER	–	device	for	study	of	abrasive	wear.		
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Wear	intensity	is	determined	as	mass	(or	linear)	
wear	 for	 unit	 friction	 path,	 and	 absolute	
wearresistance	‐	as	the	reciprocate	value	of	wear	
intensity.	
	
The	relative	wearresistance	is	the	ratio	between	
the	absolute	wearresistance	of	the	tested	coating	
and	 the	 absolute	 wearresistance	 of	 reference	
sample	 for	 equal	 friction	 path	 (number	 of	
cycles).	
	
Two	 reference	 samples	 are	 used	 in	 the	 present	
work	 –	 Nickel	 coating	 without	 nanodiamond	
particles	with	 heat	 treatment	 and	without	 heat	
treatment.	
	
b. Experimental	results	
	

	
Fig.	 2.	 Dependence	 of	 wearresistance	 Ih	 on	
nanoparticles	 size	 for	 coatings	 without	 heat	
treatment.	
	

	
Fig.	 3.	 Dependence	 of	 wearresistance	 Ih	 on		
nanoparticles	size	for	coatings	with	heat	treatment.	

	
Fig.	 4.	 Wearresistance	 of	 Ni	 coatings	 without	 and	
with	nanoparticles	without	and	with	heat	treatment.	

c. Analysis	of	the	experimental	results	
	

The	 presence	 of	 nanodiamond	 particles	 affects	
the	value	and	the	character	of	the	abrasive	wear.	
This	influence	becomes	more	complicated	along	
with	the	heat	treatment	of	the	coating.		
	
For	 size	 of	 nanoparticles	 4	 nm	 and	 100	 nm	
coatings	with	heat	treatment	show	higher	wear,	
and	for	size	200	and	250	nm	the	opposite	effect	
is		observed	–	wear	is	lower	than	that	of	the	case	
without	heat	treatment.	
	
The	 dependence	 of	 wear	 on	 nanodiamond	
particles	 size	 is	 of	 nonlinear	 character,	 and	 the	
various	 coatings	 show	different	 duration	 of	 the	
running‐in	process.		
	
The	 boundary	 number	 of	 cycles	 N*,	 where	 the	
whole	 coating	 is	 worn,	 is	 always	 bigger	 for		
coatings	without	heat	treatment.	
	
The	 highest	 wearresistance	 show	 Ni	 coatings	
with	nanodiamond	particles	of	 the	 size	δ	=	100	
nm	without	heat	treatment.		
	
	
4. STARTING	CONTACT	FRICTION	
		

a. Theory	
	
From	the	point	of	view	of	process	history,	or	 in	
time	 cross‐section	 of	 the	 process,	 tribosystem	
undergo	 three	 friction	 stages:	 starting,	 kinetic	
and	 pathological	 friction.	 The	 starting	 friction,	
known	 as	 static	 friction	 in	 the	 classical	
mechanics,	 is	 done	 under	 conditions	 of	
preliminary	 microdisplacement	 in	 the	 contact	
zone	 and	 the	 tribosystem	 performs	 the	
transition	 between	 static	 state	 (at	 rest)	 and	
movement.	Kinetic	is	the	friction	when	the	body	
is	moving	upon	the	counterbody.		
	

	
Fig.	 5.	 Variation	 of	 friction	 force	 and	 friction	
coefficient	with	displacement.	
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The	 kinetic	 friction	matches	 the	 stationary	 and	
the	 pathological	 regimes	 of	 contact	 joint	
operation.		
	
The	 pathological	 friction	 is	 characterized	 by	
abrupt	increase	of	friction	with	wear	and	seizure	
in	contact.		
	
The	difference	between	starting	friction	force	То	
and	sliding	friction	force	Т:	

oT T T   	 	 	 (1)	

gives	the	jump	in	the	friction	force	during	system	
transition	 from	 state	 at	 rest	 and	 state	 of	
movement,	 and	 corresponds	 to	 the	 jump	 in	 the	
friction	coefficient,	i.e.	 	

o     	 	 	 (2)	

The	work	 of	 the	 starting	 friction	 force	 is	 given	
by:	

 s o o o o oA T T S PS 


	 	 (3)	

And	the	work	of	the	kinetic	friction	force	is:	

 pA T TS PS 


	 	 (4)	

Let	present	the	ratio		
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  	 	 	 (5)	

The	parameter	 s 	is	called	relative	change	of	the	
starting	friction;	it	is	the	ratio	between	the	jump	
of	friction	and	the	starting	friction	coefficient.	
	
Similarly,	 for	 the	 relative	 change	 of	 the	 kinetic	
friction	 p 	is	obtained	the	expression:	
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b. Procedure	and	experimental	results	
	
The	 parameters	 of	 starting	 friction	 have	 been	
studied	 using	 a	 test	 rig	with	 functional	 scheme	
as	shown	in	Fig.	6.	
	
The	experimental	arrangement	consists	of	body	
1	and	counterbody	2,	which	form	a	contact.	The	

body	1	is	 fixed	in	the	holder	3	and	is	connected	
through	 the	 nonelastic	 thread	 with	 the	
dynamometer	6	and	micrometric	screw	5.	
		

	
Fig.	6.	Functional	scheme	of	 the	 test	 rig	 for	study	of	
starting	friction.	
	
Tangential	force	is	loaded	on	the	body	1	near	the	
contact	 surface	 through	 slow	 turning	 of	 the	
micrometric	 screw.	The	normal	 load	Р	 is	 set	by	
means	of	the	loading	bodies	4.	
	
The	 body	 1	 is	 a	 prismatic	 sample	 of	 size		
30	х	50	х	8	mm	made	of	duraluminium	(Al),	and	
the	 counterbody	 2	 represents	 a	 round	 disk	 of	
diameter	ф	 100	mm	 and	 thickness	 3	mm	with	
the	deposited	coating.		
	
The	procedure	of	measurement	the	friction	force	
is	of	following	sequence:	

‐ The	 specimen	 2	 with	 coating	 is	 fixed	 in	 the	
bed	of	the	base,	and	the	body	1	is	mounted	in	
the	 holder	 3,	 then	 they	 are	 put	 on	 the	
specimen	2.	

‐ The	normal	load	is	set	by	the	loading	bodies	4.		

‐ The	elastic	dynamometer	6	is	put	in	the	initial	
reset	to	zero.	

‐ The	 micrometric	 screw	 5	 is	 turned	 very	
slowly	and	the	pointer	of	the	dynamometer	6	
shifts	with	 ease.	 In	 the	moment	 of	 shivering	
of	 the	 pointer	 backwards,	 the	 indication	 of	
the	 dynamometer	 is	 read.	 The	 maximum	
value	 of	 the	 indication	 corresponds	 to	 the	
value	of	the	starting	friction	force	То.		

‐ The	 screw	 keeps	 on	 turning	 and	 the	
indications	 of	 the	 dynamometer	 are	
observed;	 they	 match	 the	 kinetic	 friction	
force	Т	after	the	jump	of	friction.	

‐ The	dial	of	 the	dynamometer	 is	calibrated	 in	
force	[N].	

‐ During	 the	 tests	 the	 body	 1	 is	 made	 of	 the	
same	material	but	for	each	test	with	different	
coatings	a	different	specimen	of	this	material	
is	used.	All	specimens	of	the	body	have	equal	
size	and	roughness 0,418Ra  m .	
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Fig.	7.	Diagram	of	starting	friction	force	То.	
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Fig.	8.	Diagram	of	the	jump	of	friction	force	Δµ.	
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Fig.	 9.	 Diagram	 of	 the	 relative	 change	 of	
starting	friction	Ψs.	
	

0

5

10

15

20

25

30

35

40

0‐ 0+ 5‐ 5+ 100‐ 100+ 200‐ 200+ 250‐ 250+

Fig.	 10.	 Diagram	 of	 the	 relative	 change	 of	
kinetic	friction	Ψр.	
	
Table	3	shows	the	results	of	starting	and	kinetic	
friction,	and	the	figures	give	some	diagrams.	
	
	
5.		Analysis	of	the	experimental	results	

	
A	 jump	 in	 the	 friction	 force	 is	 observed	 for	 all	
tested	 tribosystems	 however	 at	 different	 values	
of	starting	friction	force	and	kinetic	friction	force.	
The	 jump	 is	 of	 different	 duration	 for	 the	
different	coatings.	
	
The	 relationship	 between	 the	 starting	 friction	
force	 and	 the	 size	 of	 nanodiamond	 particles	 is	
strongly	 nonlinear.	 This	 is	 most	 clearly	
expressed	 for	 coatings	 with	 heat	 treatment.	 At	
coatings	 without	 heat	 treatment	 this	
relationship	 has	 clear	 maximum	 for	 particles	
size	 100  nm,	 however	 the	 value	 of	 the	
maximum	 is	 lower	 than	 the	 two	 maximums	 in	
the	curve	of	the	coatings	without	heat	treatment.		
Genesis	 and	 variations	 in	 the	 friction	 forces	
depend	directly	on	 the	 formation	and	evolution	
of	 the	 contact	 spots,	 the	 latest	 depending	 on	
many	various	factors	too.	

	
Table	3.	Experimental	data	of	friction	parameters.

№	 Series	 То,	[N]	 Т,	[N] µо µ Δµ	 Ψs	 Ψр
1	 0‐ ( Ni Al  )	 19,62	 16,35	 0,34	 0,28	 0,06	 17,6	 21,4	

2	 0+		( Ni Al  )	 21,8	 18,53	 0,38	 0,32	 0,057	 15	 17,8	

3	 5‐	( 5Ni nD Al  )	 15,26	 10,90	 0,266	 0,19	 0,076	 28,6	 40	

4	 5+	( 5Ni nD Al  )	 30,52	 27,25	 0,53	 0,475	 0,055	 10,4	 11,6	

5	 100‐	( 100Ni nD Al  )	 27,25	 21,80	 0,47	 0,38	 0,09	 19,1	 23,6	

6	 100+	( 100Ni nD Al  )	 21,8	 19,62	 0,38	 0,342	 0,038	 10	 11,1	

7	 200‐	( 200Ni nD Al  )	 20,71	 17,44	 0,36	 0,30	 0,06	 16,7	 20	

8	 200+	( 200Ni nD Al  )	 33,79	 28,34	 0,59	 0,494	 0,096	 16,3	 19,4	

9	 250‐	( 250Ni nD Al  )	 11,99	 9,81	 0,20	 0,17	 0,03	 15	 17,6	

10	 250+	( 250Ni nD Al  )	 19,62	 16,35	 0,342	 0,285	 0,057	 16,7	 20	
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