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 A B S T R A C T 

A description of the set of software tools for detailed computational 
modelling of thin lubrication layers behaviour is presented in this paper. 
Individual chapters outline reasons for realization of its each part, explain 
the functionality of each software tool and the given mathematical 
definition or digital implementation of all important equations or 
formulae. The following are examples of partial results of the analysis 
carried out and the resulting flow factors databases for some kinds of 
rough surfaces, together with an example of the analysis result of the 
connecting rod sliding bearing of supercharged internal combustion 
engine. 
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1. INTRODUCTION 
 
All technological processes leading to the final 
surface design of mechanical components 
creates on its surface characteristic pattern. 
These surface patterns subsequently play, 
particularly in the case of surface contact pairs, a 
significant role in terms of their function and 
lubrication. However, inclusion of the actual 
surface patterns of machine parts, as one of the 
input parameters of the computational 
simulation of friction losses, does not even 
matter in the contemporary modern era. The 
current state follows logically from history – 
these detailed contact analyses could not be 
used effectively in the past due to their large 
computational complexity. 

However, as time progresses also the computer 
technology has improved noticeably. Therefore, 
computational models also need to adapt to the 
contemporary hardware, to maximally exploit 
its potential and enable the emergence of more 
comprehensive, as well as, more sophisticated 
software tools. This statement is supported by 
the fact that development, especially the 
employment of experimental tools, is very 
expensive and time consuming in comparison 
with the application of computational models. 
These models, after completion, provide results 
quickly and inexpensively. 
 
The perfection and credibility of the design of 
individual components nowadays plays an 
important role in the development of any 
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product already in the process of the virtual 
prototype. Therefore, the continuous 
improvement of computational models and their 
adaptation to the possibilities of contemporary 
computer technology, still more significantly, 
finds its application. 
  
The description of advanced computational tools 
for investigation of frictional losses of 
mechanical tools will be described below, as it is 
a logical progression when its function is taken 
into consideration. 
 

 
2. ROUGH SURFACES 
 
To obtain the relevant data characterising the 
rough surface of real machinery parts, there are 
basically two following options: data obtained 
from the measurement (profilometer, scanner) 
or generated surface roughness profile. 
 
2.1 Surface roughness measurement  
 
Both alternatives for obtaining the surface 
roughness characteristics, mentioned above, 
have naturally their positives and negatives. 
Main disadvantages of the surface roughness 
measurement are e.g. the need to purchase 
expensive measuring equipment, large time-
consumption, or the dependence on the 
realisation of a real sample. 
 

On the other hand, the advantage of this option is 
that (if the sufficient measurement accuracy is 
provided and also the meaningfulness of 
subsequent filtration is guaranteed) we have real 
data characterising the surface of real machinery 
component which can be worn, for example. 
 
2.2 Surface roughness generation  
 
The greatest advantages of this method, in 
comparison with the measurement, are the high 
time-efficiency, no need for additional equipment 
(standard PC is sufficient) or unlimited 
possibilities for creation of the different surface 
patterns. The main disadvantage is the need to 
develop specialized software. 
 
To generate rough surfaces based on fractal 
theory are used predominantly following 
methods: the midpoint displacement technique 
and the Weierstrass-Mandelbrot function. 

The first mentioned method, described in detail 
in the source [4], finds mostly its application in 
the scans reconstruction of different fracture 
surfaces of various materials. For our purposes, 
modelling of the surface roughness of real 
machinery parts, the most suitable method seems 
to be the Weierstrass-Mandelbrot function. This 
function was published in 1998 by Yan and 
Komvopoulos [5] to generate the three 
dimensional rough surfaces. Fractal formations, 
which include the simulation of the resulting 
surface generated by this function, have their 
basis in a wide chaos theory pioneered by Benoit 
Mandelbrot himself [6]. 
 
The above mentioned Weierstrass-Mandelbrot 
function is expressed as: 
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Where L is the sample length [m], G is the fractal 
roughness [m], Df is the fractal dimension [-],ɾf is 
the scaling parameter [-], M is the number of 
superposed ridges used for the surface profile 
construction [-], n is the frequency index [-] and 
 m,n is the random phase [-].The upper limit of 
the frequency index can be determined by the 
formula: 
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where int[…] denotes the maximum integer value 
of the number in the brackets and LS is the cut off 
length.  
 
Specific values of the variables will be discussed 
in the chapter 9. 
 
When there is needed to generate the rough 
surface based on the measured data by using the 
fractal theory, it is essential to know one of the 
main inputs into the Weierstrass-Mandelbrot 
function, the fractal dimension Df. That is why the 
next chapter describes functionality of the 
determination of fractal dimension. 
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3. FRACTAL DIMENSION ANALYSIS TOOL 
 

3.1 Theoretical background   
 
Although the fractal geometry is known since the 
1970’s there is no exact or universal definition of 
this concept. Mandelbrot defined fractal using its 
main feature, the self-similarity. This shows that 
fractal is created by infinite number of geometric 
patterns that repeat themselves in the basic body 
with the change of view scale. Fractal formation 
can be described with the use of two well-known 
examples: the Koch snowflake, or the length of 
the Britain coastline [8]. 
 
The fractal dimension can take non-integer values 
in range of 0<Df<3. For example simple line 
would have fractal dimension of Df =1, the plain 
surface Df =2, but surface with fractal dimension 
of Df =2.9 would fill the space more like a volume. 
 
3.2 Surfaces fractal dimension  
 
Fractal dimension can be used to describe the 
complexity of the analysed surface, as it is shown 
in the next Figs. 1-2. Even though these two 
surfaces have the same roughness (Ra=0.8 μm), it 
can be clearly seen that they look different. This 
divergence is caused by the fractal dimension. 
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Fig. 1. Surface example with the fractal dimension 2.1 
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Fig. 2. Surface example with the fractal dimension 2.7 

3.3 Computational algorithm  
 
To determine fractal dimension (FD) the MATLAB 
script was developed, it can provide the real value 
of FD of given surface. As it was mentioned above, 
fractal geometry is a repetition of geometric 
patterns with the change of scale. This 
characteristic is used in the FD analysis tool 
which means that FD calculation is based on the 
surface area depending on the scale. For this 
purpose is the surface divided into known 
number of elements. For each element the area is 
calculated, which is summed up for the whole 
surface. The element size is gradually decreasing 
from the size equal to the size of surface 
multiplied by 0.9. 
 
Because it is challenging to accurately determine 
FD, three different ways to calculate the area of 
one element were implemented. The reasons for 
this step will be explained further. 
 
The first approach suggested by Kwaśny (2009) 
is described by following equation. [9] 
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Where Aiɉɿe) is the area of the element number i 
[m2], ɿe is the length of the element side [m], and 
hai, hbi, hci, hdi are heights in corners of the element 
[m].  
 
As a second approach the formula developed by 
Xie (1998) was implemented. [10] 
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Lastly, the third approach, based on Heron’s 
formula for the calculation of the area of 
triangle, is expressed by the following equation. 

 
( )d = - - -

+ - - -

i e abc abc a abc b abc ac

acd acd ac acd c acd d

A s s l s l s l

s s l s l s l
 (5) 

Where la, lb, lc and ld are lengths of the element 
sides [m], sabc and sacd are the circumferences of 
the triangles created by dividing the element by 
its diagonal [m] and lac is the length of the 
element diagonal [m]. 
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If the whole area of surface is known for the 
present element size, then these two parameters 
are plotted to the fully logarithmic axes graph and 
linear regression is performed on the linear part of 
the data set, as it is shown in the following Fig. 3. 
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Fig. 3. Fully logarithmic interpretation of the surface 
area on the element size dependence.  
The left one: according the Kwaśny formula, the 
middle one: according the Xie approach and the right 
one: computation based on Heron’s formula. 

 
The line formed during linear regression can be 
described as: 

 a b= +f f f fy x . (6) 

Then the FD of the analysed surface is calculated 
according to the equation: [9] 

 b= -2f fD . (7) 

These three formulae were used because: a) 
during the testing phase (with surfaces of known 
FD) of the FD analysis a tool was discovered, b) 
none of the formulae can be used for whole range 
of FDs (Df=2.1 to 2.9), and c) neither of the 
formulae is accurate enough through the whole 
range. 

 
However, soon was also discovered that the 
second formula (3) works well with low values 
of the FD (Df < 2.2). It was also discovered that 
the most accurate results of higher FD values (Df 

> 2.2) were obtained by calculating arithmetic 
mean value of the results of formulas (4) and 
(5). 
 
After implementation of these changes to the FD 
analysis tool, the maximum error of value 
determining is within 1.5 %, instead of up to 12 
% when only one formula is used. The effect of 
this improvement can be clearly seen on the 
graph below (Fig. 4). 
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Fig. 4. The comparison of used approaches. 

 
In many cases, where the implementation of 
formulas for calculating the contact pressure is 
realised, the Gaussian distribution of asperity 
heights is presumed. Therefore, even here, this 
analysis should not be left out. 
 
 
4. NORMAL DISTRIBUTION TEST TOOL 
 
Generally, statistical testing is based on the 
knowledge of sampling distribution of the 
measured or computed data. Usually, for further 
computation, it is assumed that data comes from 
the normal distribution and therefore this fact 
might be tested first. Normality testing is not 
that common because the average statistics that 
comes next is less sensitive on the normality 
distribution condition if the number of examples 
is higher than approximately 30. But still, it is a 
good example of the obtained data validation. 
 
 
4.1 Chi -squared test of goodness of fit 
(Pearson’s test) 

 
Chi-squared test is one of the well-known tests 
that are used to check normality distribution of 
data. Fundamentally it is a comparison of the 
differences between the observed distribution 
function and the normal distribution function. ɯ2 
test criterion assesses whether the difference in 
frequency counts are only accidental and 
examined data comes from the normal 
distribution or whether the variance is too high 
and the origin from the gauss distribution can be 
rejected. Criterion ʔ2 is defined as follows: 
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Where t i is observed frequency count in 
particular class m and 

it  is theoretical frequency 

count in particular class m. 
 
If the amount of examined data is signed ns, the 
sample average value of data xs is ʈs and sample 
standard deviation is ʎs, then the theoretical 
frequency counts are defined as: 
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Quantification x+ is gained from the division of 
examined data into frequency intervals. For 
example in interval <1,2> the considered value 
of x+ is 2. 
 
After the ʔ2 number is computed, it must be 
compared with the critical value from the chi-
squared distribution. When ʔ2 < ʔ2crit , it means 
that the assumption of normal data distribution 
is approved. If ʔ2 > ʔ2crit  , the normal distribution 
origin can be neglected. 
 
When such test of data normality is successfully 
done, other hypothesis testing can be certainly 
performed. 
 
4.2 T-test (student ’s test) 
 
Concerning surface roughness data which are 
computed using previously described formulas, 
some kind of validation is useful to know 
whether the given conditions were fulfilled or 
not. In this case it is tested that given roughness 
Ra is statistically the same as the one computed 
from generated surfaces data (single t-test). 
Alternative test is about the surfaces couple, 
where is tested that the roughness Ra of the 
couple is statistically the same (t-test for 
couples). 
 
Hypothesis testing is common topic which is 
taught at every lecture of mathematical 
statistics. Therefore, no exact description of 
information sources is included. Normality 
testing is described in more detail because it is 
not used that frequently. 

 

 Asperity height [ɛm]

F
re

q
u

e
n

cy
 o

f 
a

sp
e

ri
ty

 h
e

ig
h
t 
[

-]

 
Fig. 5. Specific example of histogram of analysed 
surface. 
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Fig. 6. Specific example of normal probability plot of 
analysed surface 

 
5. DETERMINATION OF STATISTICAL 

PARAMETERS OF THE GENERATED 
SURFACE 

 
Because of the random phase  m,n , created by 
using random number generator function (a part 
of MATLAB) and has a range 0 to 2π, is each 
surface unique. Therefore, it is important to 
verify if the created surface possesses the 
expected values of asperity heights, areal density 
of asperities and average radius of the asperity 
curvature or the other statistical parameters, 
possibly useful as inputs for future contact 
modelling. For this purpose was created a set of 
special subroutines was created and also 
implemented into MATLAB programing 
environment. 
 
5.1 Basic statistical characterization of 

surface roughness  
 
Basic characterization of rough surfaces is described 
in the standards of each country. This theory is well 
described by formulae together with their digital 
expressions, for example in the source [7].  
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Furthermore, in the literature, generally, it is 
possible to find different naming of the basic 
statistical parameters for 2D and 3D surfaces. In this 
case, the 3D characterization of the rough surface 
(either measured or generated) is performed as of 
the 2D, always determined separately for each row 
and column. The resulting statistical characteristic 
is then simply their average.  
 
However, everything depends on one basic 
definition of the so-called zero level line of the 
surface. The following paragraph will explain the 
principles of the code for the determination of the 
zero level line (plane) of a rough surface. 
 
The core of algorithm for determination of zero 
level line for each line and column of the surface 
matrix can be based on numerical integral 
computation. Zero level line is located in the 
specific height of 2D surface profile whereas the 
positive area under surface profile (above zero 
level line) has the same area [m2] as the negative 
area (under the zero level line). Precision of 
described computational algorithm depends on 
configured error of this computation. Then until 
the correct compliance of above mentioned 
"while" cycle is done, the zero level line is shifted 
in correct direction. The comparison of the same 
2D surface roughness profile (one after the 
generation and the second one after 
determination of the zero level line) is shown in 
the next figure. The difference is visible at the 
first glance. 
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Fig. 7. Zero level determination of the 2D surface 
roughness profile 

 
After the above described determination of the 
zero level line of the each column and the each 
line of 3D surface roughness profile follows the 
implementation of basic formulae and 
calculation of statistical parameters, see source 
[7]. The most widely used parameters for 
characterization of surface profile can be 
computed by following formulae. 
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Where Ra is the average absolute deviation from 
mean line of the surface roughness profile [m], n 
is the number of peaks over the sampling length, 
z is the actual height of each asperity [m] and Rq 
is the root mean square deviation from the mean 
line of the 2D profile [m]. 
 
5.2 Advanced statistical characterization of 

surface roughness  
 
Inputs for computational modelling of frictional 
losses, e.g. of slide bearings, can consist of the 
information about areal density of asperities, or 
average radius of the curvature of the asperity peak. 
Therefore, determination of these two statistical 
parameters is described in following paragraphs. 
 
For the purposes of determining the average 
curvature of asperities and their areal density, it 
is necessary to perform some kind of filtration at 
first. If the given local peak is about to be 
declared as the real peak, it must comply with 
following four conditions: 
 
It must lie above the zero level line of the surface 
profile; it must be greater than the two adjacent 
grid points in both directions; the second 
derivative of the function (row or column) at a 
given point must be less than 0 (the function must 
be concave at that point); it must be a turning 
point of the function (it means that the behaviour 
of the analysed function here changes itself from 
increasing to decreasing function, or vice versa). 
 

For the above mentioned conditions it is 
necessary to determine the first and the second 
numerical derivative of the function (each row 
and each column). 
 

The final number of peaks is then considerably 
reduced. An illustrative example of such a 
reduction is shown in the following figure. Basis 
applicable examples of formulae for determining 
the numerical derivatives are also listed below. 
 
The calculation is, of course, modified according to 
the position of the point in the matrix that is 
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calculated (for the calculation of the first point in 
the row the two previous points cannot be found). 
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Variables from eq. (12) and (13) are explained 
together with variables of the next equation. 
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Fig. 8. View of the original 2D roughness profile with 
marked points of the resulting profile after filtering. 

 
Then the areal density is simply determined by 
the number of points that meet these conditions, 
and by the size of the analysed sample of the 
surface. 
  
The radius of curvature of the peak is then 
determined again over each row and column of 
the surface roughness matrix, which satisfy all 
the above mentioned conditions. It is a 
calculation of the osculating circle, which is 
governed by the following formula. 
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Where ( )if x is the first numerical derivative of 

the analysed function at the point xi of the 

function vector, ( )if x  is the second numerical 

derivative of the analysed function at the point xi 
of the function vector, and ɼc is the curvature 
radius of the surface roughness peak at the point 
xi of the function vector [m]. 
 
 
6. SURFACE ROUGHNESS DIRECTIONAL 

DEPENDENCE 
 
Considering the [1], there is the directionality of 
analysed surfaces determined by the following 

equation describing areal autocorrelation 
function (AACF). The areal autocorrelation 
function gives the information about correlation 
between the original surface and the same 
surface shifted by m (n) – times differential 
length ɝØ (ɝÙ) in all possible plane directions 
(+/- x and +/- y). 
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In upper mentioned equation has i in range 0, 1 
..., M; and j in range 0, 1, …, N; Whereas M and N 
is the mesh grid size of the analysed sample of 
measured or generated surface in x and y 
direction respectively. ʐiЄÉЁɝØ and ʐjЄÊЁɝÙȟ where 
ɝØ and ɝÙ is the differential length in x and y 
direction respectively. If the maximum number 
of grid points in the directions x and y is M, N 
respectively, then it is natural that the surface 
can be shifted maximally M/2 or N/2 – times 
respectively. Then m is in interval (0, M/2) and n 
is in interval (0, N/2). 
 

The residual surface ʂɉØȟÙɊ and other required 
variables are computed by following  equations. 
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For the purpose of discovery of the analysed 
surface directionality is, primarily, necessary to 
know the number of grid points (length), needed 
for the reduction of AACF to the 50 % of its 
original height, in both directions. ʇx0.5 and ʇy0.5 [2]. 
For better illustration is just good to mention that 
for example in the source [3] is the reduction 
presented to the 10 % of original AACF height for 
the determination of surface roughness 
directionality. Then the directional dependence of 
surface roughness is computed by the following 
equation, presented in the source [2]. 

 
0,5

0,5

x
R

y

l
g

l
=  (23) 

For better illustration, what it approximately 
means, the value ɾR is given the following Fig. 9. 
 

 

ɔRι1

 

 

ɔR =1
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Fig. 9. Example of contact areas of longitudinally 
oriented (ɾR>1), isotropic (ɾR=1) and transversely 
oriented (ɾR<1) surfaces [2] 

 
According to the equation (23) it is logical that 3D 
graphical representation of AACF of isotropic surface 
roughness is symmetrically shaped. The following 
picture presents a typical view of such AACF with 
3D plot of the appropriate surface, Fig. 10. 
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Fig. 10. Example of generated 3D surface roughness 
profile (upper) and it’s according AACF. 

 
All previously mentioned software tools have been 
created specifically for their further use in order to 
determine the effect of two approaching surfaces 
on the formation of the hydrodynamic lubricating 
layer. Then should be covered the behaviour of 
transition between the purely hydrodynamic 
lubrication regime and dry friction, as described by 
the Stribeck curve (Fig. 11). 
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Fig. 11. Stribeck curve. 

 
 
7. INFLUENCE OF SURFACE ROUGHNESS ON 

HYDRODYNAMIC LUBRICATION LAYER 
 
Computational approach, which affects the 
above-mentioned connection between the mixed 
lubrication regime and the hydrodynamic 
regime, i.e., in our case, a description of the effect 
of surface roughness on the hydrodynamic 
pressure in the oil film layer, was published in 
1978 by authors Nadir Patir and H.S. Cheng [2]. 
The above mentioned effect is incorporated by 
using factors of flow (flow factors) in the 
Reynolds equation. The resulting shape of this 
modified equation is then: 
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Here h denotes the thickness of the oil film layer 
[m], hT is the local oil film thickness [m], x, y 
denote the coordinate, t  is the time [s], p is the 
pressure [Pa], ʍ is the density of the oil [kg∙m-3] 
ʂ is the dynamic viscosity of the oil [Pa∙s], ʎ is a 
combined arithmetic mean roughness of both 
surfaces [m], U1, U2 is the circumferential speed 
of surface 1 resp. 2 [m∙s-1] and  x,  y and  s are 
just those flow factors [-]. The situation is well 
illustrated by the following Fig. 12. 
 

 

hT

h

U2

U1

x

Rɻ2

Rɻ1

contact

 
Fig. 12 The oil film thickness in micro scale [2]. 

 
Previous equation can be used for both isotropic 
surfaces and surfaces with different 
directionally oriented surface asperities. Flow 
factors are for these surfaces expressed via 
empirical relationships as a function of the ratio 
h/ʎ and the surface characteristics ɾR. 
Determination of the variable ɾR is described in 
detail in the previous chapter. 
 
If there is no scan of the surface, if details of 
manufacturing process of the surface structure 
are unknown, or if we are simply not interested 
in high precision of our computation, then 
empirical equations can be advantageously used 
for calculation of the flow factors mentioned in 
the sources [2]. However, the following passage 
will deal with the converse case where we want 
to describe in detail the behaviour of the thin 
lubrication layer between two specified contact 
surfaces. For this purpose, it is necessary to use 
other specialized computational tool. 
 
7.3 Flow factors calculation tool  
 
Basically, the computation works on the 
principle of pre-calculated databases of flow 
factors. For given surfaces (either generated or 
measured) the calculation of flow factors for 
different values of their basic distances is done – 
the distance h (determined from the surface zero 
level plane) which adequately covers the range 
of values that can occur in reality. Then, from the 
pre-calculated databases it is possible to inter or 

extrapolate the final value of flow factor. 
Examples of such pre-calculated databases are 
listed in the chapter 9. EXAMPLES OF RESULTS.  
 
The calculation is based on the numerical 
solution of Reynolds equation. The flow between 
two rough surfaces which are separated from 
each other by the space hT, is solved. Rough 
surfaces are there just because of the micro-
scale determination of the hT matrix. If that 
surface protrusions are in contact, the distance 
matrix of these surfaces there reaches 0 at these 
grid points. In practice it means that no lubricant 
flow occurs at this grid point.  
 
The Flow factors then represent something like 
a loss coefficient of the lubricant flow in the 
defined gap between surfaces.  Furthermore, 
this information (about numbers of non-
lubricant flow points) can be used for the future 
calculation of a contact pressure (for a given 
number of h/σ ratio the number of contact 
points at given area and for given type of surface 
is known). 
 
To solve the Reynolds equation from above, it is 
also necessary to define the boundary conditions 
of the solution. Example of the Reynolds 
equation, dimensionless variables, the resulting 
expression of discretized formula for pressure 
calculation, and formulas for calculation of flow 
factors follow. 

 3 3 6 T
T T

hp p
h h U

x x y y x

dd d d d
h

d d d d d

å õå õ
+ =æ öæ ö

ç ÷ ç ÷
 (25) 

 
0

, , , ,Th x y
H X Y P p

h
s h

s s s h
= = = = = (26) 

Here the hT denotes the local oil film thickness 
[m], x, y are the coordinates, p is the pressure 
[Pa], ʂ is the oil dynamic viscosity [Pa∙s], ʎ is the 
combined arithmetic mean roughness of both 
surfaces [m], U is the combined circumferential 
speed of surfaces [m∙s-1] and H, X, Y, P and hare 

the dimensionless variables. 
 
After discretization the final equation for 
description of the pressure can be in following 
shape: 
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Where: 
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Equations for the pressure flow factor 
calculation in direction x (ɮx), y (ɮy) and for the 
shear flow fac. ɮs are: 
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Here the variables q are the flow of the oil 
between two surfaces. 
 
These equations demonstrate that flow factors 
are expressed as a ratio between the flow 
through rough surfaces and the flow through 
smooth surfaces. For calculation of these 
pressure flow factors was used the first 
boundary condition – that the surfaces are in not 
in a relative movement (U=0). The second 
boundary condition regards the pressure at the 
beginning and at the end of the analysed 
element (Pin and Pout). Pin=1e5 Pa, Pout=0 Pa. For 
calculation of the flow between rough surfaces 
(qrough) the equation (27) is used (determination 
of the pressure loss). In the case of smooth 
surfaces the pressure loss is linearly distributed 
between Pin and Pout. 
 
For calculation of above expressed shear flow 
factor the first boundary condition was used – 
that the surfaces are in a relative movement 
(U=1.5 m/s). The second boundary condition is 
Pin= Pout=0 Pa. Lx, Ly is the length of the analysed 
surface sample [m]. 
 
Above described tool for flow factors calculation 
was again implemented in programing 
environment MATLAB. The numerical solution is 
based on finite difference method as well as the 
other software tools described in this article 
which utilize the iterative solution.  
 
The equations from (29) to (35) are taken from 
sources [14], [15], [16]. 
 
Example of computed hydrodynamic pressure 
matrix for pressure flow factor calculation is 
demonstrated in the following Fig. 13. 
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Fig. 13. Example of hydrodynamic pressure matrix 
for  x calculation 
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8. FRICTIONAL LOSSES DETERMINATION 
 
There are two basic approaches applicable to 
determination of frictional losses. The first 
mentioned approach presented in this paper is 
well known and still in use. Inputs into this 
model are created by variables described in 
detail in previous chapters and also by outputs 
from the hydrodynamic solution. Used 
hydrodynamic solution is fully described in [12], 
written by Novotný, co-author of this paper. 
 
8.1 Greenwood and Tripp approach  
 
Computational model described in this chapter 
is based on the theory explained in detail in [11]. 
The basic equation for the calculation of the 
contact pressure has following form: 

 ( ) 5/2
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( )
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p d KF
p
hb s

s

å õ
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ç ÷
. (36) 
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1 11

E EE

u u- -
= + . (39) 

Here ʂ is the surface density of the roughness 
peaks [1/m2], ɼc is the radius of curvature [m], ʎ 
is the average roughness of surfaces [m], ʉ is the 
Poisson constant of materials [-], Sq is the root 
mean square deviation from the mean plane of 
the 3D profile [m], %Ȭ is the composite elastic 
modulus [Pa], E is the elastic modulus of 
materials [Pa] and F5/2  is the roughness contact 
pressure function [-]. 
 
Then, the total value of the pressure is given by 
the sum of the hydrodynamic pressure and the 
pressure, which is given by the contact between 
asperities of two surfaces. This can be expressed 
by the following equation. 

 Total Hydrodynamic ContactP P P= +  (40) 

From the element size it is possible to compute 
the whole area of the contact. Then, from the 
determined contact pressure, it is relatively easy 
to express the contact force or the friction 
torque (as regards the rotary part). 

The contact pressure curve, depending on the 
ratio of lubrication height and the variable sigma 
(h/ʎ), is in this case very nonlinear. It can cause, 
especially in case of very thin lubrication layer, 
extensive challenges. Therefore, it is also good to 
consider a different computational model and 
then compare results. Good and stable results 
are possible to obtain from one also very old and 
well-known theory – the Hertz theory. In this 
case the contact between the plate and the 
sphere is taken into consideration. A smaller 
nonlinearity in the contact pressure curve of this 
model can help a lot in online calculation, in the 
multi body system (MBS) application. 
 
8.2 Application of the Hertz theory  
 
This theory can be described by the following set 
of equations. 

 hd s= -, 2 /2c cR b b= , (41) 
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Where ɿ is the deflection at the centre of the 
contact [m], R is the reduced radius of curvature 
[m], ɼc is the radius of curvature [m], W is the 
normal load [N], %Ȭ is the composite elastic 
modulus [Pa], Na is the number of asperities per 
element size, computed from the variable ʂ (the 
surface density of the roughness peaks [1/m2]), 
a is the radius of contact area [m] and P, Pmax are 
contact pressures [Pa]. Above mentioned 
formulae can be found in source [13].  
 
With application of the Hertz theory it is 
necessary to accept the following simplifying 
assumptions. Bodies in the contact are assumed 
to be isotropic and elastic, perfectly smooth and 
the contact areas are taken to be relatively flat 
and small to the radius of the non-deformed 
bodies’ curvature. 
 
 
9. EXAMPLES OF RESULTS 
 
Results which are shown in the following three 
Figs. 14-16 were computed for surfaces generated 
by using fractal approach described in one of the 
introductory chapters. Statistical conformity of 
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generated surfaces was verified and all flow 
factors were computed twenty times. The same 
procedure was implemented for surfaces gained 
from measurement. Results are then averages 
from all computed values. Inputs into Weierstrass-
Mandelbrot function for obtaining surfaces with Sa 
= 0.8 are listed in the Table 1. 
 
Table 1. Used inputs for the surface roughness 
generation. 
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Fig. 14. Comparison of the pressure flow factors 
curves in x direction for different surfaces. 
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Fig. 15. Comparison of the pressure flow factors 
curves in y direction for different surfaces. 
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Fig. 16. Comparison of the shear flow factors curves 
in x direction for different surfaces. 

Example of result in the Fig. 17 illustrates how 
different shape the curve representing the 
friction torque of a slide bearing can have, if the 
hydrodynamic or mixed lubrication regime is 
taken into account during the computational 
modelling of the slide bearing. As it is evident 
from the maximal values of the both curves, the 
one representing the asperity contact part 
reaches considerable values in the area of the 
maximum relative eccentricity of the bearing 
pin. In the modern powertrain development 
taking into account also the mixed lubrication 
regime is therefore practically necessary.  
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Fig. 17. Computational approaches comparison. 

 
Behaviour of the directionally dependent 
surfaces can be analysed easily just by loading 
the appropriate scan of current surfaces. 
Examples of real scanned technical surfaces are 
depicted in the following Figs. 18-23. 
 

 

 

 
Fig. 18. The compression piston ring. 
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Fig. 19. The piston ring surface pattern. 
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Fig. 20. The AACF representation of the piston ring 
surface pattern. 

 

  
Fig. 21. The combustion engine slide bearing. 
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Fig. 22. The slide bearing shell surface pattern. 
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Fig. 23. The AACF representation of slide bearing 
shell surface pattern. 

 
 
10. CONCLUSION 
 
Contact mechanics is a frequently studied field. 
Many scientists around the world have been 
devoting large amounts of resources, effort and 
time into the development of different methods 
of the surface characteristics measurement, or to 
precisely analyze their behavior under heavy 

load in modern machineries. Therefore, in this 
paper the complex computational strategy for 
the detailed design of different machinery parts 
was described. 
  
The authors in this article assembled the main 
challenges of each individual part of the 
software tools developed with a belief that a 
wide range of experts will become familiar with 
the existence of this methodology for different 
machine parts design. Hopefully, this would help 
to develop environmentally friendly, improved, 
and more efficient machines capable to save 
energy, time, and money. 
 
Because all of the above introduced and 
described software tools are modular, they can 
be used for example for design or optimization 
of piston rings, journal or rolling bearings, etc. 
The presented theory is easily transferable to all 
machine components design. 
 
Detailed information on the contact behavior of 
surfaces are advantageous and can be used for 
wear prediction which should also be very 
important for all experienced designers of all 
modern machines. 
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