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 A B S T R A C T 

In this paper, the theoretical study of squeeze film characteristics 
between porous parallel stepped plates with non-Newtonian micropolar 
fluid is presented. The lubricant in the film region and also in the porous 
is modeled as Eringen’s micropolar fluid. A non-Newtonian modified 
Reynolds equation is derived for porous parallel stepped plates and 
applied to obtain solution of squeeze film characteristics. Comparing 
with the classical Newtonian lubricant case, the influence non-
Newtonian micropolar fluids are found to enhance the load carrying 
capacity and lengthen the approaching the time of porous parallel 
stepped plates. The load capacity decreases as the step height increases. 
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1. INTRODUCTION  
 
In recent years, self-lubricating porous bearings 
have been studied because of their industrial 
applications and machine manufacturing. These 
bearings have self contained oil reservoir and 
hence do not require continuous lubrication. Most 
porous bearings have interconnecting pores which 
store the lubricating oil. Hence, when normal load 
is applied, the fluid is supplied through the 
interconnected pores to the fluid film region to 
support the load, and when the load is removed 
from the loaded part of the bearing, fluid is 
reabsorbed by capillary action. Since these can 
operate without additional lubricant for longer 
period, porous bearings are widely used, where 
relubrication would be difficult. Thus, porous 
metal bearings are used in manufacturing small 
motors, home appliances, instruments and 
construction equipments. Because of these 

practical aspects, there have been numerous 
studies on the performance characteristics of such 
bearing [1-4]. But these studies were confined to 
Newtonian lubricants. 
 
Applications of squeeze-film technology shows 
great importance in many areas of applied 
science and industrial engineering, such as 
machine elements, automotive components, 
animal joints, matching gears, wet-clutch plates. 
In general, research of squeeze film 
characteristics concentrates attentions on the 
use of Newtonian lubricants. For example, by 
Hays [5], Hamrock [6], Abell and Ames [7], 
Rashidi et.al. [8]. 
 
In order to satisfy the requirement of modern 
machine systems operating severe conditions, the 
increased use of different types of non-Newtonian 
fluids as lubricants has been emphasized. It has 
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been observed that the addition of small amounts of 
long-chain polymer solutions to Newtonian fluids 
gives the most desirable lubricants owing to 
stabilization of the flow properties of the lubricants. 
The use of additives minimizes the sensitivity of 
lubricants to changes in shear rate and which 
supports greater load carrying capacities. To 
describe accurate flow behavior of such fluids with 
additives, several existing microcontinumm 
theories can be applied. The micropolar fluid theory 
proposed by Eringen [9] contain a suspension of 
particles with individual motion. This theory is the 
subclass of more general type of fluids known as 
microfluids [10], which includes the effects of local 
rotatory inertia, couple stresses and inertial spin. An 
application of these non-Newtonian fluids includes 
the solidification of liquid crystals, cooling of 
metallic plate in a path, animal bloods and exotic 
solutions, for which the classical Navier Stokes 
theory is inadequate. Several investigators used the 
miropolar fluid theory for the study of several 
bearing systems such as slider bearings [11,12], 
journal bearings [13,14], squeeze film bearings [15-
18] and porous bearings [19-22] and have found 
some advantages of micropolar fluids over the 
Newtonian fluids such as increased load carrying 
capacity and increased time of approach for 
squeeze film bearings. 
 
Hence, in this paper an attempt has been made 
to study the effect of squeeze film characteristics 
between porous parallel stepped plates with 
micropolar fluid.  
 
 
2. BASIC EQUATIONS  
 
The field equation for micropolar fluids in 
vectorial form are [9]: 

Conservation of linear momentum: 

       
1

2 2
2

B

V V

DV
v f

Dt

   

   

      

    

       (1) 

Conservation of angular momentum: 

  
     .

2 B

v v

Dv
V v l j

Dt

   

   

       

   
       (2) 

Conservation of mass: 

   0V
t





  


                       (3) 

Where V  is the velocity vector, v  is the 
microrotation velocity vector,   is 

thermodynamic pressure, Bf  is the body force 

per unit mass, Bl  is the body couple, j  is the 

microinertia constant, ,   are the viscosity 

coefficient of the classical fluid mechanics and 
, , ,     are the new viscosity coefficients for 

micropolar fluids. 
D

Dt
 indicates material 

differentiation. For an incompressible fluid   is 

constant, . 0v   and   is replaced by the 
hydrodynamic pressure p.   
 
 
3. MATHEMATICAL FORMULATION OF THE 

PROBLEM 
 

The physical configuration of the problem is as 
shown in the Fig. 1 where the upper plates 
approaching the lower with a normal velocity V.  
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Fig. 1. Squeeze film between porous parallel stepped plates.
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The lubricant in the film region and that in the 
porous region is considered to be an micropolar 
fluid. The constitutive equations for micropolar 
fluids proposed by Eringen’s [9] simplify 
considerably under the usual assumptions of 
hydrodynamic lubrication. The resulting 
equations under steady–state conditions are [15]: 

Conservation of linear momentum: 

 
2

3

2
0

2

vu p

y xy


 

  
    

  
               (4) 

0
p

y





                                  (5) 

Conservation of angular momentum: 

 
2

3
32

2 0
v u

v
yy

  
 

  


                  (6) 

Conservation of mass: 

 0
u v

x y

 
 

 
                            (7) 

Where  ,u v  are the velocity components of the 

lubricant in the x and y directions, respectively, 

and 3v  is micro rotational velocity component, 

  is the spin viscosity and   is the viscosity 

coefficient for micropolar fluids and   is the 

Newtonian viscosity coefficient. 
 
The flow of micropolar lubricants in a porous 
matrix is governed by the modified Darcy’s law, 
which account for the polar effects is given by [19]: 

 
 

* *k
q p

 


 


                        (8) 

Where  * * * *, ,q u v w  is the modified Darcy’s 

velocity vector, k  is the permeability of the 

porous matrix and *p  is the pressure in the 

porous region. Due to continuity of fluid in the 

porous matrix, *p  satisfies the Laplace Equation: 

  
2 * 2 *

2 2
0

p p

x y

 
 

 
                         (9) 

The relevant boundary conditions are: 

(a) at the upper surface  y h  

      0u , v V , 3 0v                    (10a) 

(b) at the bearing surface  0y   

         0u , *v v , 3 0v                       (10b) 

 
 
4. SOLUTION OF THE PROBLEM 
 
The solution of equations (4) - (6) subject to the 
corresponding boundary conditions given in the 
equations (10a) and (10b) is obtained in the form. 

   

2 2

11

21 31 41

1 2

2

sinh cosh

y p N
u A y

x m

A my A my A



 
      

   

    (11) 

   3 21 31

11

cosh sinh

1

2

v A my A my

p
y A

x

  

 
 

 

       (12) 

where: 

11 212A A  , 

 

 

31

21

sinh
2

1 cosh

h p
A mh

x
A

mh










 , 

    
2

31
5

1
cosh 1 sinh

2 2

h p h N
A mh h mh

x m A

 
     

  

, 

2

41 31

2 N
A A

m
  , 

    
2

5

2
sinh cosh 1

Nh
A mh mh

mh

 
   

 
 , 

in which: 

N
m

l
 ,   

1

2

2
N



 

 
 

 
,     

1

2

4
l





 
 
 

 . 

 
Integrating equation (9) with respect to y over 
the porous layer thickness,   and using the 
boundary conditions of solid backing 

0
p

y

 
   

 at y   , we obtain: 

0 2

2

0y

p p
dy

y x






   
     
               (13) 
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Assuming that, the porous layer thickness,   is 
very small and using the pressure continuity 

condition  p p  all the interface  0y  of 

porous matrix and fluid film, equation (13) 
reduces to:   

2

2

0y

p p

y x






 


 
                    (14) 

Then, the velocity component of the modified 

Darcy’s velocity v  at the interface  0y  is 

given by: 

 

2

20y

k p
v

x



 








 
                 (15) 

The modified Reynolds equation is obtained by 
integrating the equation of continuity (7) with 
respect to y over the film thickness, h  and 
replacing u  in equation (6) by their 
corresponding expression given in equation (11) 
and also using the boundary conditions for v  
given in equations (10a) and (10b) in the form. 

 
 
12

, , 12
d k dp

f N l h V
dx dx

 


 

  
        

   (16) 

where:  

  3 2 2, , 12 6 coth
2

Nh
f N l h h l h N l h

l

 
    

 
 

On integrating Equation (12) using the boundary 
condition: 

0
dp

dx
         at   0x   

12

12
( , , )

( )

i

i i

dp V x

kdx
f N l h



 

 

 




         (17) 

where:  

.

;0

2

1

LxKLforh

KLxforhhi




 

  3 2 2, , 12 6 coth
2

i
i i i i i

Nh
f N l h h l h N l h

l

 
    

 
 

The relevant boundary conditions for the 
pressure are: 

21 pp        at     KLx ,                    (18a) 

       02 p         at     Lx                         (18b) 

Solution of equation (17) subject to the 
boundary conditions (18a) and (18b) is: 

2 2 2 2 2

1

1 1 2 2

(1 )
6

12 12
( , , ) ( , , )

( ) ( )

K L x L K
p V

k k
f N l h f N l h


   

   

 
  

  
     

(19) 

2 2

2

2 2

6
( )

12
( , , )

( )

V
p L x

k
f N l h



 

 

 




     (20)  

The load carrying capacity, w is obtained in the form: 

1 2
0

2 2
KL L

KL

w b p dx b p dx          (21)                    

Which in nondimensional form: 

3 3 3

2

3 2 2
* * *

1 22 2

1

8 1 1
( , , ) 12 ( , ,1) 12

1 1

wh K K
W

bV L N N
f N l H f N l

N N


 

 
 

   
     

     
     

           

(22)            

Where  * 1

2

h
H

h
  , 

3

2

k

h



     and    *

2

l
l

h
  

*
3 2 2* * * * * * *

1 *
( , , ) 12 6 coth

2

NH
f N l H H l H NH l

l

 
    

 
 

2* * *

2 *
( , ,1) 1 12 6 coth

2

N
f N l l N l

l

 
    

 
 

Writing 
dt

dh
V 2  in equation (22), the 

squeezing time for reducing the initial film 

thickness 
0h  of 

2h  to a final thickness  fh   of   2h    

is given by: 

2
3 * * *2 1

1 2 2* 0

3
*

* * *

2 2 2

1
{ ( , , , ) 12

1
8

( , , ) }

s

h f

N
K f N h h lwh t

Nt
bL

f N h l dh





  
   

    




(23) 

Where: 
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1
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*
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1 2
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*
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s

s

h h l h h N l h h
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Nhf N h h l h

l


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 
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   
   
  
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5. RESULTS AND DISCUSSIONS 
 
This paper predicts the effect of squeeze film 
lubrication between porous parallel stepped plates 
with micropolar fluid. The microplar fluid is 
characterized by two non-dimensional parameters 
such as the coupling number, 

1
2

2
N



 

 
 

 
which characterizes the coupling 

between the Newtonian and microrotational 

viscosities, the parameter, 
2

ll
h

 
 
 

*  in which l*  

has the dimension of length and may be considered 
as chain length of microstructures additives. The 

parameter l* , characterizes the interaction of the 
bearing geometry with the lubricant properties. In 

the limiting case as 0l *  the effect of 
microstructures becomes negligible. The effect of 
permeability is observed through the non-

dimensional permeability parameter, 
3
2

k

h



 
  
 

 

and it is to be noted that as 0   the problem 

reduces to the corresponding solid case and as 

0l N * ,  it reduces to the corresponding 

Newtonian case. 

5.1. Load carrying capacity 
 
The variation of non-dimensional load carrying 

capacity W  with *H for different values of N  

with 0 15 0 6 0 01*l . , K . , .    is presented in 

Fig. 2. The dotted curve in graph corresponds to 
Newtonian case. As compared with the 
Newtonian, the load carrying capacity increases 
with increasing values of coupling number N. It 
is observed that the effect micropolar fluid 
parameter N enhances the load carrying capacity 
as compared to the Newtonian case.  Figure 3 
depicts the variation of non-dimensional load 

carrying capacity W  with *H for different 

values of *l  with 0 5 0 6 0 01N . , K . , .   . It 

is observed that the increasing values of 

material length *l increases the load carrying 
capacity as compared to the Newtonian case. 
The variation of non-dimensional load carrying 

capacity W  with *H for different values of   

with 0 15 0 6 0 5*l . , K . , N .    is presented in 

Fig. 4. The effect of   is to decrease the load 

carrying capacity as compared to corresponding 

solid case  0  . The adverse effects of the 

porous facing on the bearing surface can be 
compensated with the selection of the lubricants 
with proper microstructure additives. Figure 5 
depicts the variation of non-dimensional load 

carrying capacity W  with *H for different 

values of K with 0 15 0 5 0 01*l . , N . , .   . As 

the value of K increases the load carrying 
capacity decreases. 
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Fig 2. Variation of non-dimensional W with H
*
 for different values of N with

         l
*
 = 0.15,  = 0.01, K = 0.6.

W

H
*

 N = 0.0[Newtonian]

 N = 0.2

 N = 0.4

 N = 0.6

 N = 0.8

 N = 1.0

 
Fig. 2. Variation of non-dimensional W with H* for different values of N with l* = 0.15, ψ=0.01, K=0.6. 
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Fig 3. Variation of non-dimenstional W with H
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 for different values of l
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 with

          = 0.01, K = 0.6, N = 0.5.
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H
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*
 = 0.0[Newtonian]
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*
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*
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Fig. 3. Variation of non-dimensional W with H* for different values of l* with ψ = 0.01, K=0.6, N=0.5. 
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Fig.4 Variation of non-dimensional W with H
*
 for different values of   

          with K = 0.6, N = 0.4, l
*
 = 0.15. 

W

H
*

  = 0.0[Solid case]

  = 0.01

  = 0.001

 
Fig. 4. Variation of non-dimensional W with H* for different values of ψ with K = 0.6, N=0.4, l*=0.15. 
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Fig 5. Variation of non-dimensional W  with H
*
 for different values of K with

            = 0.01, N = 0.5, l
*
 = 0.15.

W
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 K = 0.7

 K = 0.8

 
Fig. 5. Variation of non-dimensional W with H* for different values of K with ψ = 0.01, N=0.5, l*=0.15. 
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Fig. 6. Variation of non-dimensional time of approach t* with hf
* for different values of N with ψ = 0.01, l *=0.1, K=0.6. 
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Fig 7. Variation of non-dimensional time of approach t
*
 with h
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 for different values of l
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          with K = 0.6,  = 0.01, N = 0.6.

t
*

h
*

f

 l
*
 = 0.0[Newtonian]

 l
*
 = 0.02

 l
*
 = 0.04

 l
*
 = 0.06

 
Fig. 7. Variation of non-dimensional time of approach t* with hf

* for different values of l * with K=0.6, ψ = 0.01, N =0.6.  
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Fig. 8. Variation of non-dimensional time of approach t* with hf

* for different values of ψ with K=0.6, N =0.6, l * = 0.1.  
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Fig. 9. Variation of non-dimensional time of approach t* with hf

* for different values of K with ψ=0.01, N =0.6, l * = 0.1. 

 
5.2. Squeeze film Time-height relationship 
 
The most important characteristics of the 
squeeze film bearings is the squeeze film time 
i.e. the time required for reducing the initial film 

thickness 2h  of 0h to a final value fh . The 

variation of non-dimensional time of approach 
*t  with *

fh  for different values for N  with 

0 1 0 6 0 01*l . , K . , .    is presented in Fig. 6. 

It is observed that, the presence of micropolar 
fluid as lubricants have longer response time as 
compared to the Newtonian case. Figure 7 
depicts the variation of non-dimensional time of 

approach *t  with *

fh  for different values for *l  

with 0 6 0 6 0 01N . , K . , .   . For increasing 

values of *l  the squeeze film time increases as 
compared to the Newtonian case. The variation 

of non-dimensional time of approach *t  with *

fh  

for different values for   with 

0 1 0 6 0 6*l . , K . , N .    is presented in Fig. 8. 

The effect of   is to decrease the squeeze film 

time as compared to the corresponding solid 

case  0   Fig. 9 depicts the variation of non-

dimensional time of approach *t  with *

fh  for 

different values for K  with 

0 6 0 1 0 01*N . , l . , .   . It is observed that, 

the response time increases for decreasing 
values of K. 
 

6. CONCLUSION  
 
On the basis of Eringen’s [9] micropolar fluid 
theory, this paper predicts the effect of 
micropolar fluid on the squeeze film lubrication 
characteristics between porous parallel stepped 
plates. On the basis of the results computed the 
following conclusions are drawn. 

1. The effect of micropolar is to increases the 
squeeze film pressure and the load carrying 
capacity as compared to the corresponding 
Newtonian case. 

2. The squeeze film time is lengthened for the 
micropolar lubricants as compared to the 
corresponding Newtonian case. 

3. The presence of porous facing on the 
bearing surface affects the performance of 
the bearing.  

4. The adverse effects of the porous facing on 
the bearing surface can be compensated 
with the selection of the lubricants with 
proper microstructure additives. 

 
 
Nomenclature 
  

*H  non-dimensional mean film thickness 1

2

h

h

 
 
 

. 

1
h  maximum film thickness 

2
h  minimum film thickness 
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*

s
h  step height 2

0

h

h

 
 
 

. 

KL  position of the step 0 1K  . 

k  permeability of the porous matrix  

l  characteristic length of the polar suspension 
1

2

4





 
  

  
  

 

 

*l  non-dimensional form of  
2

ll
h

  
 

 

N  coupling number 

1

2

2



 

 
  

    
 

 

p pressure in the film region. 

1
p  fluid film pressure in the region 0 x KL  . 

2
p  fluid film pressure in the region KL x L  . 

t  time of approach 

*t  non-dimensional time of approach 
2

0

38

wh t

b L

 
 
 

. 

V  velocity approach. 

w load carrying capacity 

W non-dimensional load carrying capacity 
3

2

38

W h

bV L

 
 
 

. 

  lubricant couple stress constant 

  lubricant viscosity 

  permeability parameter 

  spin viscosity 

  viscosity co-efficient for micropolar fluids 

  viscosity co-efficient 
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