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 A B S T R A C T 

The theoretical analysis of the combined effects of surface roughness and 
viscosity variation on the couple stress squeeze film characteristics of short 
journal bearings is presented. The modified stochastic Reynold’s equation 
accounting for the viscosity variation of couple stresses fluid and 
randomized surface roughness structure on bearing surface is 
mathematically derived using the Christensen stochastic theory. It is 
observed that, the transverse roughness pattern improves the squeeze film 
characteristics whereas the bearing performance is affected due to the 
presence of one dimensional longitudinal surface roughness. Further, it is 
observed that, the effect of viscosity variation is to reduce the load carrying 
capacity and squeeze film time as compared to the case of constant viscosity. 
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1. INTRODUCTION  
 
The technology of squeeze film are widely 
applied in many engineering applications, such 
as gears, disk clutches, machine tools, dampers, 
aircraft engines and human joints. The squeeze 
film behaviour arises from the phenomenon of 
two lubricated surfaces approaching each other 
with a normal velocity. Newtonian lubricants are 
conventionally used in the squeeze film bearings 
[1-3], with the development of modern machine 
equipments, the increasing use of fluids 
containing microstructures, such as additives 
suspensions, granular matter has received great 

interest. These kinds of lubricants exhibit the 
rheological behaviours of non-Newtonian fluids. 
A number of micro continuum theories have 
been developed to explain the peculiar 
behaviour of fluids containing a structure such 
as polymeric fluids [4, 5]. The micro continuum 
theory derived by Stokes [6] is the simplest 
generalization of the classical theory of fluids, 
which allows for the polar effects such as the 
presence of couple stress and body couples. By 
applying this couple stress fluid model, a 
number of researches in various squeeze film 
problems have been presented. The typical 
studies are the squeeze film behaviour between 
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finite plates of various shapes [7], the squeeze 
film configuration with reference to synovial 
joints [8, 9], the squeeze film partial journal 
bearings [10] and squeeze film performance 
between a sphere and flat plate [11]. Generally 
speaking, a higher film pressure and larger load 
carrying capacity as well as long response time 
are obtained for the squeeze films by the use of 
fluids with couple stress. 
 
The effect of surface roughness on the 
hydrodynamic lubrication of bearings has been 
studied by several investigators. The random 
character of the surface roughness prompted 
many researchers to adopt a stochastic approach 
for the study of surface roughness [12-14]. The 
stochastic model developed by Christensen [12] 
for the study of hydrodynamic lubrication of 
rough surfaces formed the basis for several 
studies [15-17]. The effect of surface roughness 
on the performance of short porous journal 
bearings is studied by Naduvinamani et.al. [18]. 
Lin et.al. [19] studied the effect of surface 
roughness on the oscillating squeeze film 
behaviour  of a  long partial journal  bearings. 
Since the effect of couple stress is significant and 
the roughness cannot be avoided, it is worth to 
investigate the combined effect of both on the 
bearing performance. Although the isotropic 
rough plates with non-Newtonian couple stress 
fluid in the squeeze film has been studied by Lin 
et.al. [20], the study of journal bearing system is 
absent. Earlier theories were based on the 
assumptions that the viscosity is constant, 
although it is a function of both pressure and 
temperature. The variation in viscosity with 
temperature is important in many practical 
applications, where lubricants are required to 
function over a wide range of temperature [21]. 
To study the effect of viscosity variation, one has 
to consider a typical viscosity film thickness 
relation with thermodynamic problems [22-24]. 
A generalised form of Reynold’s equation for 
stochastic lubrication applicable to rough 
bearings was derived by considering the 
viscosity variation and surface roughness in 
short journal bearings and slider bearings by 
Kumar and Sachidanand [25] and Kumar and 
Shukla [26] respectively. The effect of viscosity 
variation on the squeeze film performance of 
narrow journal bearing with couple stress fluid 

is studied by Reddy et.al. [27] by assuming 
bearing surfaces are smooth. 
 
In this paper an attempt has been made to study 
the combined effect of viscosity variation and 
surface roughness on the couple stress squeeze 
film lubrication of narrow journal bearing. 
 
 

2. MATHEMATICAL FORMULATION OF THE 
PROBLEM  

 

Figure 1 shows the physical configuration of a 
squeeze film journal bearing. The shaft of radius 
R approaches the bearing surface with velocity 

dH

dt

 
 
 

. The lubricant in the system is taken to 

be Stokes couple stress fluid.  
 

To represent the surface roughness the 
mathematical expression for the film thickness is 
considered to be made of two parts: 

( , , )sH h h z  
                           

(1) 

Where cosh c e    denote the nominal 
smooth part of the film geometry with c being 
the radial clearance and e is the eccentricity, 

while ( , , )sh z  is the part due to the surface 

asperities measured from the nominal level and 
is a randomly varying quantity of zero mean,   

is an index determining definite roughness 
arrangements. Further, /x R   with R being 
the radius of the journal. 
 

The basic equations derived by Stokes [6] for the 
motion of an incompressible   couple stress fluid, in 
the absence of body forces and body couples are: 

. 0V                                     (2) 

2 40 p V V      
                 

(3) 

Where the vector V  represents the velocity 
vector, p is the pressure, µ is the shear viscosity 
and  is the new material constant responsible 

for the couple stress fluid property. 
 
With the usual assumptions of hydrodynamic 
lubrication applicable to thin films, equations of 
motion (2) and (3) take the form: 
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Fig. 1.  Squeeze film geometry of a journal bearing. 
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where u, v and w denote the velocity 
components in the x, y, and z directions 
respectively. 
 
The boundary conditions at the bearing surface are:

  
2 2

2 2

( ,0, ) ( ,0, ) ( ,0, ) 0

0

y o y o

u x z v x z w x z

u w

y y
 

  

    
    

    

    (8) 

and at the journal surface are: 

2 2

2 2

( , , ) ( , , ) 0, ( , , )

0

y H y H

dH
u x H z w x H z v x H z

dt

u w

y y
 

  

    
    

       

 (9) 

The solution of equations (5) and (7) subjected 
to the relevant boundary conditions given in 
equations (8) and (9) is obtained in the form  

21 cosh((2 ) / 2 )
( ) 2 1

2 cosh( / 2 )

p y H l
u y y H l

x H l

   
     

   
              (10) 

and 

 

21 cosh((2 ) / 2 )
( ) 2 1

2 cosh( / 2 )

p y H l
w y y H l

z H l

   
     

   

                  (11) 

where: /l    

Using the expressions (10) and (11) for velocity 
components u and w in the continuity equation (4) 
and integrating with respect to y and the use of  
boundary conditions (8) and (9), the modified 
Reynold’s equation is obtained in the form: 

( , ) ( , )
12

g H l p g H l p H

x x z z t 

       
    

       
 (12) 

where:  

3 2 3( , ) 12 24 tanh( / 2 )g H l H l H l H l      (13) 

It is noticed that, for Newtonian fluid, 
0  and  0. As 0,l l    the function 

( , )g H l defined in the above equation (13) 

approaches 3H  and modified Reynolds equation 
(12) reduces to the classical form of the 
Newtonian lubricant case [1]. 
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Now it is assumed that, the Newtonian viscosity 
µ is varying along the fluid film thickness H 
according to the relation given below [22]. 

1

1

Q

H

h
 

 
  

 
               (14) 

where 1 is the inlet viscosity at: 

1 (1 )H h c    . 

The parameter Q(0≤Q≤1) depends on the 
particular lubricant used, for perfect Newtonian 
fluids Q=0, whereas for perfect gases Q=1. For 
mathematical simplicity, the couple stress 
parameter l is assumed to be independent of 
viscosity variation, this can be done by assuming 
that   is varying in the same way as µ. 

 
2.1 Stochastic Reynolds equation  
 

Let ( )sf h  be the probability density function of the 

stochastic film thickness hs. Taking the stochastic 

average of equation (12) with respect to ( )sf h , the 

stochastic Reynolds equation is obtained: 

   ( , ) ( , )( ) ( ) ( )
12

E g H l E g H lE p E p E H

x z z z t 

       
    

       

             (15)  
where:   

(.) (.) ( )s sE f h dh





      (16) 

In accordance with Christensen [12], it is 
assumed that: 

2 2 3

7

35
( ) ,

( ) 32

0 elsewhere

s s

s

C h C h C
f h C


   

 



        (17) 

where / 3C   is the standard deviation.  
 
Longitudinal roughness pattern  
 
For the one dimensional longitudinal roughness 
pattern, the roughness striations are in the form 
of ridges and valleys in the x-direction, in this 
case film thickness assumes the form: 

 ( ) ( , )sH h z h z      (18) 

and the stochastic modified Reynold’s equation 
(15) takes the form   

 

1

1 ( )

(( ( , )) )

( , ) ( ) ( )
12

E p

x E g H l z

E g H l E p E H

z z t







  
 

  

   
 

   

            (19) 

 
Transverse roughness pattern 
 
For one dimensional transverse roughness 
striations are in the form of ridges and valleys in 
the y-direction in this case the film thickness 
assumes the form: 

( ) ( , )sH h h       (20) 

The modified Reynold’s type equation (15) takes 
the form: 

 

1

( , ) ( )

1 ( ) ( )
12

(( ( , )) )

E g H l E p

x z

E p E H

z E g H l z t





  
 

  

   
 

   

   (21) 

Equations (19) and (21) together can be written as:

  
( , , ) ( )

( , , ) ( ) ( )
12

G H l c E p

x z

G H l c E p E H

z z t





  
 

  

   
 

   

    (22) 

 

 1

( , )         for logitudinal roughness

where ( , , ) 1
  for transeverse roughness

E ( ( , ))

E g H l

G H l C

g H l 




 



 
2.2 Short   bearing approximation  
 
In order to simplify the problem and to obtain a 
closed form solution for the fluid pressure, a 
narrow bearing approximation is assumed. That 
is the circumferential variation of pressure can 
be neglected as compared to the axial variation, 
then the modified stochastic Reynold’s equation 
(22) reduces to: 

( , , ) ( ) ( )
12

G H l C E p E H

z z t

   
 

   
    (23) 

Substituting 
1

1

Q

H

h
 

 
  

 
 in the above 

equation, to obtain:  
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1

1

( , , ) ( ) ( )
12

Q
hG H l c E p E H

z H z t

     
  

     

   (24) 

Integrating twice with respect to z and applying 
the following boundary conditions: 

( )
( ) 0,at and 0,at 0

2

L dE p
E p z z

dz
     (25) 

The fluid film pressure is given by: 

2
21

1

6
( )

( , , ) 4

Q

H dH L
E p z

G H l c h dt

     
     

   
   (26)  

Introducing the non-dimensional variables: 

2

2

1

, , , cos ,
2

( )
1 cos ,

L z l dH d C
z l c c

R L c dt dt c

H E p c
H p

dc
R

dt


 

 




    

   
 
 
 

 (27) 

On substituting equation (27) into above 
equation (26) the non-dimensional fluid film 
pressure is given in a closed form is obtained as 

2
224 cos 1

( , , )(1 ) 4

Q

Q

H
p z

G H l c

 



 
  

  
  (28) 

 

 1

( , )         for logitudinal roughness

where ( , , ) 1
  for transeverse roughness

E ( ( , ))

E g H l

G H l c

g H l 




 



3 2 3( , )=H 12 24 tanh
2

H
g H l l H l

l

 
   

 
 

2.3 Load carrying capacity 
 
The load carrying capacity is evaluated by 
integrating the squeeze film pressure acting on 
the journal shaft is given by: 

/ 2 3 / 2

0 / 2

( ) 2 ( )cos

z L

z

E w R E p d dz

 

 

 
 

 

   
  

  (29) 

Introducing the non-dimensional quantity: 

 
2

2

1

( )

( / )

E w c
w

R L d dt 
    (30) 

The load carrying capacity can be expressed in 
non-dimensional form as: 

3 / 22
2

/ 2

4 (1 cos )
cos

(1 ) ( , , )

Q

Q
w d

G H l c

 

 

  
 










      (31) 

The non-dimensional load carrying capacity w  in 
the above equation (31) cannot be obtained by 
direct integration. It can be numerically evaluated 
by the method of Gaussian quadrature. 
 
2.4 Squeeze time eccentricity ratio 

relationship 
 
For constant load E(w), the time taken by the 
journal to move from ε=0 to ε= ε1 can be 
obtained by integrating equation (30) with 
respect to time. Introducing the non-
dimensional response time: 

2

3

1

( )E w c
t t

R L
                      (32) 

We have the time-height relationship expressed as:  

1d

dt w




                                  
 (33) 

with initial condition of 0 at  =0t   . In the 

limiting case of 0c   equations (28), (31) and (33) 

reduce to that of smooth case studied by Reddy [27]. 
 
 
3.  RESULTS AND DISCUSSIONS 
 
This paper predicts the combined effects of surface 
roughness and viscosity variation on the couple 
stress squeeze film characteristics of short journal 
bearings. These effects are analyzed on the basis of 
various dimensionless parameters such as the 
viscosity variation parameter Q, roughness 

parameter c , couple stress parameter l  and the 
eccentricity ratio parameter . 
 
In the present analysis, we choose the parameters, 

0.5   (length to diameter ratio), since in 
practice the eccentricity ratio ranges from 0.4 to 
0.6. Couple stress fluid is characterized by the non-

dimensional parameter l , the value of this couple 
stress parameter depends upon the characteristic 
material length of the polar suspensions l and the 

radial clearance c. Hence the values of l  are 
chosen as 0.0, 0.2, 0.4. Viscosity variation 
parameter Q lies between 0 and 1. Numerical 
values of  0, 0.25, 0.5, 0.75 and 1 are assumed for Q 
in order to discuss the effect of viscosity variation 
in the present analysis and the roughness 
parameter  0,0.1,0.2and 0.3c   are chosen for 

the discussion. 
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3.1 Squeeze film pressure   
 
Figure 2 shows the variation of non-dimensional 
pressure p  as a function of circumferential 

coordinate  (in degrees) on the mid-plane 0z   
at the eccentricity ratio       =0.6, couple stress 

parameter l =0.4 and roughness parameter 
c =0.2 for both longitudinal and transverse 
roughness patterns. It is observed that, the effect of 
viscosity variation parameter is to decreases the 
squeeze film pressure for both longitudinal as well 
as transverse roughness patterns. Figure 3 shows 
the variation non-dimensional pressure p  as a 

function of circumferential coordinate  (in 

degrees) on the mid-plane 0z   at the 
eccentricity ratio  =0.6 and Q=1 for different 

values of  l  for both longitudinal and transverse 

roughness pattern. It is observed that, the pressure 

p  increases for increasing values of l  for both 

longitudinal as well as transverse roughness 
patterns. The presence of couple stress parameter 
provides an increase in squeeze film pressure. As 
the viscosity variation factor increases the squeeze 
film pressure decreases rapidly for couple stress 
fluid than Newtonian fluid. Thus the viscosity 
variation effect is significantly for couple stress 
fluid. The effect of c  on the variation of p  with   

is depicted in the Fig. 4.  It is observed that, the 

pressure p   decreases with increase in c  for 

longitudinal roughness pattern, whereas p  

increases with increase in the values of c  for 
transverse roughness pattern. 
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Fig.2  Dimensionless pressure versus bearing circumferential angle for

           different viscosity variation parameters
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Fig. 2. Dimensionless pressure verses bearing circumferential angle for different viscosity variation parameters. 
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Fig.3  Dimensionless pressure versus bearing circumferential angle for

           different couple stress parameters
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Fig. 3. Dimensionless pressure verses bearing circumferential angle for different couple stress parameters. 
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Fig. 4. Dimensionless pressure verses bearing circumferential angle for different roughness parameters. 
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Fig.5  Dimensionless load versus eccentricity ratio with

           viscosity variation parameters

 

 



Longitudinal              Transeverse

                         Q=0.0[constant viscosity]

                         Q=0.25

                         Q=0.5

                         Q=0.75
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Fig. 5. Dimensionless load verses eccentricity ratio with different viscosity variation parameters. 

 
3.2   Load carrying capacity 
 
The variation of dimensionless load carrying 

capacity w  with the eccentricity ratio    for 
different values of viscosity variation factor Q for 
both longitudinal and transverse pattern is 
depicted in Fig.5. It is observed that, the load 
carrying capacity decreases for increasing values 
of viscosity variation parameter for both the 
types of roughness patterns.  The variation of 

dimensionless load carrying capacity w  with 

eccentricity ratio   for different values of l  is 
shown in Fig.6. It is observed that the load 
carrying capacity increases for the increasing 

values of l . The curve corresponding to 0l   

represents the Newtonian case. Figure 7 shows 

the variation of dimensionless load w  with 
eccentricity ratio   for different values of the 

roughness parameter, c  for both the types of 

roughness patterns. It is observed that, w  

increases (decreases) for increasing values of c  
for the transverse (longitudinal) roughness case. 
 

3.3 Squeeze time eccentricity ratio 
relationship 

 

Figure 8 shows the variation of dimensionless 

squeeze film time t  with eccentricity ratio,  , 
for different values of the viscosity variation 
parameter Q, for both longitudinal and 
transverse roughness patterns.  



G.H. Ayyappa et al., Tribology in Industry Vol. 37, No. 1 (2015) 117-127 

 

 124 

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8

10

100

1000

0 .1, 1, 0 .5c Q   

 w

 l

 l

 l

 l

Fig.6  Dimensionless load versus eccentricity ratio with

           different couple stress parameters
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Fig. 6. Dimensionless load verses eccentricity ratio with different coupe stress parameters. 
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Fig.7  Dimensionless load versus eccentricity ratio with

           different surface roughness parameters
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Fig. 7. Dimensionless load verses eccentricity ratio with different roughness parameters. 
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Fig. 8. Dimensionless time verses eccentricity ratio with different viscosity variation parameters. 
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Fig.9  Dimensionless time verses eccentricity ratio for different couple stress parameters
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Fig. 9. Dimensionless time verses eccentricity ratio with different coupe stress parameters. 
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Fig.10  Dimensionless time verses eccentricity ratio for different roughness parameters
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Fig. 10. Dimensionless time verses eccentricity ratio with different roughness parameters. 

 
It is observed that the effect of variation of 
viscosity is to decrease the squeeze film time for 
both types of roughness patterns.  The variation  

t  with   for different values of l  for both the 
types of roughness pattern is shown in Fig. 9. It 
is observed that, the effect of couple stress fluids 

is to increase t  as compared to the 

corresponding Newtonian case ( 0l  ) for both 

types of roughness patterns. The variation t  

with   for different roughness parameters c  
for both longitudinal and transverse roughness 
pattern is depicted in the Fig.10. It is observed 

that, t  increase (decrease) for the increasing 

values of c for the transverse (longitudinal) 
roughness patterns. 
 
 
4.  Conclusions 
 
The present investigation reveals the effect of 
viscosity variation and surface roughness on the 
couple stress squeeze film characteristics of 
short journal bearings. The modified stochastic 
Reynold’s equation is solved for the squeeze film 
pressure and obtained the load carrying capacity 



G.H. Ayyappa et al., Tribology in Industry Vol. 37, No. 1 (2015) 117-127 

 

 126 

and squeeze film time. According to the results 
presented in the above section the following 
conclusions can be drawn: 

1. The effect of viscosity variation is to 
decreases the squeeze film pressure, load 
carrying capacity and squeeze film time for 
both the types of roughness patterns.  

2. The effect of couple stresses is to increases 
load carrying capacity and to lengthen the 
squeeze film time as compared to the 
corresponding Newtonian case for both 
types of roughness patterns. 

3. The effect of transverse (longitudinal) 
roughness pattern is to increase (decrease) 
the load carrying capacity and squeeze film 
time as compared to the corresponding 
smooth case. 

 
 
NOMENCLATURE 
 
c radial clearance 

C roughness parameter 

c  dimensionless roughness parameter  /C c  

E expectancy operator 

h film thickness 

1h  fluid film thickness at the inlet 

hs random variable 

H film thickness, h + hs 

H  dimensionless film thickness 

l couple stress parameter 

1/ 2





 
 
     

l  dimensionless couple stress parameter (l/c) 

L Length of the bearing   

p film pressure 

p  dimensionless film pressure 

2

2

1

( )E p c

d
R

dt




 
 
 

  
  
  

 

Q viscosity variation parameter 

R radius of the journal 

u,v,w  fluid velocity components in the x, y, z 
directions respectively 

t response time  

t  dimensionless response time  

2

3

1

( )E w c
t

r L

 
 
 

 

V  velocity vector 

w load carrying capacity  

w  dimensionless load carrying capacity 
2

2

1

( )

( / )

E w c

R L d dt 

 
 
 

 

Δ gradient operator 

ε eccentricity ratio (e/c) 

η material constant responsible for the couple 
stress property 

µ1 viscosity of the lubricant at the inlet 
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