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 A B S T R A C T 

Friction has a considerable impact in metal forming. This is in particular 
true for sheet-bulk metal-forming (SBMF) in which local highly varying 
contact loads occur. A constitutive friction law suited to the needs of SBMF 
is necessary, if numerical investigations in SBMF are performed. The 
identification of the friction due to adhesion and ploughing is carried out 
with an elasto-plastic half-space model. The normal contact is verified for 
a broad range of normal loads. In addition, the model is used for the 
characterization of the occurring shear stress. Ploughing is determined by 
the work which is necessary to plastically deform the surface asperities of 
the new area that gets into contact during sliding. Furthermore, the 
surface patches of common half-space models are aligned orthogonally to 
the direction in which the surfaces approach when normal contact occurs. 
For a better reflection of the original surfaces, the element patches become 
inclined. This leads to a geometric share of lateral forces which also 
contribute to friction. Based on these effects, a friction law is derived 
which is able to predict the contact conditions especially for SBMF. 
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1. INTRODUCTION 
 
Friction exerts a great influence on metal 
forming processes both in economic and 
technical terms. Usually, friction appears with an 
unintended loss of energy and with negative 
impact on the material. For example, friction 
causes energy dissipation due to heat generation 
and the occurring stresses due to friction lead to 
microscopic cracks which wear out the surface 
of a worktool [1]. These effects permanently 
decrease the functionality and availability of 
either the desired product or the worktool of the 
forming process. 

Furthermore, if process factors like strain, 
stresses or the force path have to be evaluated 
numerically or analytically, a mathematical 
connection is necessary which describes the 
contact condition between the contacting 
partners, i.e. the contact between the workpiece 
and the worktool. 
 
However, the choice of the appropriate friction 
law depends on the considered metal forming 
process which can be broadly classified into 
sheet metal forming and bulk metal forming. 
Sheet metal forming incorporates low to 
moderate contact loads. For this case, Coulomb’s 
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friction law is a valid assumption. Further 
advanced friction models for sheet metal 
forming have been proposed by Westeneng [2] 
for deep drawing which is based on a contact 
model assuming plastic deformation of the 
workpiece deformation, by Hol [3] which 
includes hydrodynamic friction with focus on 
the load-carrying capacity of the lubricant or by 
Zöller [4] which is a solely pressure dependent 
friction model. 
 
If the contact loads are high, which is the case in 
bulk forming processes, a friction model 
depending on the yield stress is more suitable. 
For example, Tresca’s friction law is a good 
assumption since the resulting friction stress is 
expressed in dependency on the shear yield 
stress. The choice of a suitable friction law 
complicates if the complex properties of both 
sheet metal forming and bulk forming are 
combined in one process. An example for such a 
combination is sheet-bulk metal forming (SBMF) 
in which half-finished products made of sheet 
metal are deformed by bulk forming processes 
[5]. The importance of friction in SBMF was 
shown in terms of mould filling as mould filling 
is significantly altered by the frictional state [6]. 
It seems to be evident, that a friction law which 
is especially suited for the unique contact 
conditions in SBMF is necessary. 
 
The findings of Shaw [7] provide a promising 
start since the friction model combines 
Coulomb’s friction model with Tresca’s law. 
Furthermore, for deep drawing it was shown 
that plastic smoothing of rough surface changes 
the friction condition [8] for multi-stage 
processes. As SBMF can also be performed 
incrementally, this effect has to be taken into 
account, too. The numerical study of friction 
requires a fine discretization of the contact area 
due to the multi-scale character of rough 
surfaces. Hence, a half-space approximation is 
preferred as it only depends on the two-
dimensional surface boundary [9] which 
consumes less computing capacity than FEM 
with its three-dimensional volume discretization 
for the same surface resolution. Kalker was one 
of the first who presented a half-space model 
[10]. The model is based on the minimum total 
complementary potential energy principle for 
the solution of elastic problems and it is 
extendable to elasto-plastic contact by limiting 
the local bearable load of the surface, as derived 

by Hencky [11] and experimentally validated by 
Bowden and Tabor [12]. 
 
Kim et al. [13] used an elasto-plastic model for 
the investigation of non-Gaussian rough 
surfaces, Tian and Bhushan [14] modelled 
normal contact between a rough surface and a 
rigid sphere and Willner [15] took into account 
fractal surfaces. Furthermore, Polonsky and 
Keer [16] used a multi-mesh and a conjugate 
gradient method for the computation of the half-
space model which was compared by Allwood 
[17] in terms of performance with other well-
established solution methods in the framework 
of half-space models. There is also the possibility 
to model three-dimensional plastic deformation 
based on volume discretization and the 
reciprocal stress theorem as derived by Jacq et 
al. [18] which was improved by Wang and Keer 
[19] in terms of the residual displacement 
increment and by Nèlias et al. [20] in terms of an 
improved plasticity loop. 
 
Additionally, research regarding tangential 
contact with half-space models is vastly spread. 
Kalker developed a contact model for both 
normal and tangential contact which was used to 
simulate rolling contact [21]. Vàradi et al. [22] 
applied the half-space on sliding contact of 
metallic surfaces, in which an elastic contact 
algorithm was used focused on thermal 
interaction. Willner [23] regarded coupling 
between normal and tangential motion and 
investigated therewith rough contact. A similar 
approach was presented by Chen and Wang [24] 
who focused on spherical contact of rough 
surfaces. Finally, three-dimensional models 
based on volume discretization are also 
expandable to tangential contact as proposed by 
Fulleringer and Nèlias [25] and applied for 
sliding and rolling contact by Boucly et al. [26]. 
 
However, the half-space model which is used for 
the later studies of the frictional interaction 
between two rough surfaces is based on a 
simplified elasto-plastic half-space model since 
it comes with less numerical effort and thus is 
faster. The model which is described in Sec. 2 is 
able to evaluate normal and tangential contact. It 
is used to research friction due to adhesion and 
ploughing as they are the main contributions in 
metallic contact to friction [12]. In Sec. 3.1 it is 
shown that the half-space model successfully 
predicts the elasto-plastic contact, although it 
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incorporates only simplified plasticity. The 
normal contact is used to analyse the evolution 
of the real contact area in dependency on the 
applied contact since the real contact area is a 
measure for the transferable adhesive forces. 
Sec. 3.2 extends the half-space model in order to 
investigate a friction share which we call 
geometric friction. Common half-space models 
align each surface patch perpendicular to the 
direction in which the contact partners approach 
for normal contact. In this section, the surface 
patches become inclined since sloped surface 
elements approximate the actual surface more 
precisely. In Sec. 3.3 sliding contact is 
investigated for the determination of the 
frictional share due to ploughing. Finally, Sec. 4 
describes the proposed friction law which is 
suited to the needs of SBMF. 
 

 
2. NUMERICAL MODEL 
 
2.1  Normal Contact 

 
The half-space model for normal contact is a 
linear system of equations which are based on 
the analytic Boussinesq potentials [27]. The 

dependency of the normal load p  at   ,x y  in 

the domain of contact   on the normal 

displacement zu  at  ,x y  is given with:  

  
 

   



 

   
 

   

2

2 2

, d d1
,z

p x y x y
u x y

E x x y y
, (1) 

where E  is Young's modulus and   is Poisson's 
ratio. Since the materials of both partners are 

elastic,   2/ 1E  is replaced with the 

composite elastic modulus [28] *E  which is 
obtained as: 

 
  

 
2 2
1 2

*
1 2

1 11

E EE
,  (2) 

where the indices refer to each contact partner. 
For rough contact Tian and Bhushan developed 
a model [14] that is able to calculate the 
interdependency between surface pressure and 
normal surface displacement. The approach, 
which is also used here, relies on the 
minimization of the complementary energy 
which in turn is based on a variational principle. 

The surfaces of both contact partners are 

discretized into  x yN N M  rectangular 

elements with size 2 2a b  as shown in Fig. 1.  
 

 
Fig. 1. Top view of discretized surface. 

 
Since the system is linear, the superposition of 
the surface displacement due to all elements l  
that are in contact yields the normal 
displacement of an arbitrary element k . The 
corresponding field problem is given by: 

 


 ,
1

M
zz

z k kl l
l

u C p .  (3) 

The influence coefficient matrix zz
klC  is obtained 

with the Boussinesq potential as: 

 
 

  

  *

1 d da b
zz
kl

a b

C
E

,  (4) 

with  

           
2 2

k l k lx x y y .  (5) 

Its evaluation is given by Love [29]. As no 
tension stress occurs in normal direction, the 
condition: 

  0 1,...,lp l M   (6) 

has to be fulfilled. The local gap distance kg  

between the surface patches is derived from Fig. 2 
with: 

    , 0k max k z kg h h u u ,  (7) 

where maxh  is the maximum height coordinate, 

kh  is the local height coordinate and 0u  is the 

global normal approach of the surfaces. 
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Fig. 2. Side view of contact approach. 

 
The elastic problem itself is solved with an 
active set strategy in conjunction with the 
conjugate gradient method, as it is highly 
accurate and needs little memory compared to 
other solution methods [17]. Eq. (7) is solved for 

0u  in such a way that the desired average 

contact load meanp  is reached at the whole 

surface. 
 
Elasto-plastic contact is included by limiting the 
local contact load to an upper bound with: 

  1,...,lp H l M ,  (8) 

where H  is the surface hardness. According to 
Bowden and Tabor [12] H  depends on the yield 

stress  y  of the weaker contact material with 

2.8 yH   .  The local displacement ,z ku  is split 

into an elastic displacement ,
el
z ku  and a plastic 

displacement ,
pl
z ku . The latter is determined after 

obtaining the elastic solution. Contact elements 
with a normal load surpassing H  are added to a 
'plastic set' [30] in which the normal load is set 
to H . A deformation field due to the plastic set is 
evaluated. Afterwards, the elastic problem is 
restarted with an altered gap function: 

     , , 0
pl el

k max k z k z kg h h u u u   (9) 

and solved for meanp  from which the load caused 

by the plastic set is subtracted. The plastic 

algorithm iteratively corrects ,
pl
z ku  until the 

solution converges. Finally, for the sake of 
volume conservation, the volume reduced due to 

,
pl
z ku  is added evenly on the element patches that 

are not in contact based on the findings of Pullen 
and Williamson [31]. 
 
 

2.2  Uncoupled tangential contact 
 
If, in addition to p , the in-plane surface tractions 

xq  and yq  are taken into account for x- and y-

direction respectively, the normal contact model 
is expandable to determine fully coupled 
frictional contact. The relations between the 
tractions and displacements are given by 

  


  , , ,
1

M
xx xy xz

x k kl x l kl y l kl l
l

u C q C q C p ,  (10) 

  


  , , ,
1

M
yx yy yz

y k kl x l kl y l kl l
l

u C q C q C p ,  (11) 

  


  , , ,
1

M
zx zy zz

z k kl x l kl y l kl l
l

u C q C q C p .  (12) 

However, Willner [23] showed that the 
differences of the solutions between a coupled 
and an uncoupled contact model vanish, if the 
contact surfaces are rough and the material 
properties of the contact partners, i.e. E  and  , 
are identical. Therefore, an uncoupled approach 
is viable. Considering relative displacement 
between the contact partners only in x-direction 
the system of equations is simplified to:  

 


 ,
1

M
xx

x k kl xl
l

u C q ,  (13) 

 


 ,
1

M
zz

z k kl l
l

u C p .  (14) 

The flexibility matrix xx
klC  is based on the Cerruti 

solution [32] which relates - similar to the 
Boussinesq solution - the displacement in x-

direction  ,xu x y  with the traction   ,xq x y  with: 

 
 

   



 

   
 

   

2

2 2

, d d1
, x

x

q x y x y
u x y

E x x y y
 

     

   

 

 

      
 

   

2

2 2

1 , d dxq x y x x x y

E x x y y
,        (15) 

which in turn yields xx
klC  as: 

 

  

  *

1 d da b
xx
kl

a b

C
E

 

 
   

  

 
  



2

3

d d1 a b
k l

a b

x x

E
,  (16)    

with  

 
       

 


1 1 2 2

1 2

1 11

E E E
.  (17) 
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The restrictions from Eq. (6) and Eq. (8) still 
apply. Furthermore, we limit the local traction 

,x lq  with: 

 


    , 1,..., 0 1
2

y

x lq m l M m ,  (18)         

which means that the upper bound of ,x lq  is 

limited by Tresca’s law of friction where m  is 
Tresca’s friction coefficient. 
 
The evaluation of the uncoupled tangential 
contact starts with the determination of the 
normal contact which solves Eq. (14) according 
to Sec. 2.1. That followed, Eq. (13)  is solved by a 
Gauss-Seidel iteration for the unknown traction 

xq  similar to [23]. 

 
 

3. CONTACT SIMULATION 
 

3.1 Normal contact 
 
The first investigation focuses solely on normal 
contact and thus applies the model from Sec. 2.1. 
The model solves the surface approach of two 
contact partners in dependency on the mean 

pressure meanp . As the normal approach is 

founded on asperity contact, it is possible to find 
local positions of the rough surface without 

contact. Therefore, the real contact area realA  is 

only a fraction of the apparent area 0A . The 

model evaluates the contact-dependent local 

pressure p , the average contact pressure meanp  

and the real contact realA  which is later 

important for the deduction of the constitutive 
friction law. 
 
The elasto-plastic deformable surface was 
measured from an electric discharge texture 
(EDT) on a 2mm thick sheet metal made of 
DC04. DC04 is a typical sheet metal material in 
SBMF and the EDT yields a characteristic surface 
roughness for SBMF. The elastic contact surface 
was measured from a stamp surface made of 
hardened steel (hardness 60HRC ). The normal 

contact was performed with different loads 
which ranged from 100 MPa to 600 MPa in steps 
of 100 MPa. Each contact load was also 
experimentally performed on 5 samples. The 
surfaces before and after contact were measured 
with a Keyence VK-X105 laser microscope. 

The numerical simulations were carried out with 
a square-shaped portion of the surfaces reaching 

a length of  2.11mmx yL L  in x- and y-direction 

respectively. The surfaces were sampled down to 
  128 128x yN N  elements for a faster 

calculation. The material parameters as well as 

the centre-line average aR  and the root mean 

square roughness qR  of the simulated surfaces 

are given in Table 1. In order to bring the 
simulations and experiments into line, the surface 
hardness of the DC04 surface was set to 800H
MPa in the half-space model. As the hardened 
steel of the stamp is much harder than DC04, the 
stamp surface was treated solely elastically. 
 
Table 1. Material & surface parameters. 

DC04 Hardened steel 

  11
1 2
2.1 10

N
E

m
 

1 2E E  

 1 0.3   2 1  

  8

2
8.0 10

N
H

m
 

 

1.034aR m  0.102aR m  

1.267qR m  0.160qR m  

 

 
Fig. 3. Ra of elasto-plastic surface in dependency on 
pmean. 

 

 
Fig. 4. Rq of elasto-plastic surface in dependency on 
pmean 
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The change of the surface deformation of the 
elasto-plastic DC04 surface in dependency on 
the normal contact load is shown in Fig. 3 and 

Fig. 4 by means of aR  and  qR  after the contact. 

The results of the simulations are compared 
with the mean values of the experiments which 
coincide very well. 
 

3.2 Influence of inclined surface patches 
 

Down-sampling and discretizing a surface comes 
with the effect that each part of the continuous 
surface area becomes represented by the mean 
height value of the corresponding area. 
Furthermore, for the half-space model each 
contact element is aligned into the normal 
direction of the normal contact approach. For 
example, Fig. 5 shows the discretized surface 
line which was originally represented in Fig. 2. 
 

 
Fig. 5. Side view of normally discretized surface line. 
 

One way to improve the surface representation 
is taking a finer resolution for the discretization, 
which has the disadvantage that the numerical 
effort increases. Another way to improve the 
surface representation is the consideration of 
skewed surface patches based on the idea of an 
inclined plane which does not increase the 
numerical effort considerably. Furthermore, this 
approach enables the use of the direct 
transmission of tangential forces over adjacent 
flanks. Fig. 6 shows the discretized surface line 
with inclined patches which was originally 
represented in Fig. 2. 
 

 
Fig. 6. Side view of discretized surface line with 
inclined patches. 

Each height value h  of the discretized surface is 
the mean value of a subset of s  measured points 

( , , )i i i imp x y z . The incline of each surface 

patch is obtained with a multiple linear 
regression analysis for each subdivision k  with 
its s  elements. In this connection, the regressors 
k , k  and  k  describing the inclined plane: 

     i k i k i kz x y   (19) 

have to be identified in such a way that the sum 
of the squared errors between iz  and the target 

plane is minimized [33]. The least-squares 
function is: 

      


   
2

1

( , , ) ( )
s

k k k k i k i k i
i

S x y z  (20) 

and its minimization    ( , , ) (0,0,0)k k kS  

gives the system: 





  

  

 

 
  

 
 

 
     
   

   

2

1 1 1

2

1 1 1

1 1

1

s s s

i i i i
i i i
s s s k

i i i i k
i i i
s s k

i i
i i

x x y x

x y y y

x y







 

 
 
 
 
  

1

1

1

s

i i
i
s

i i
i
s

i
i

x z

y z

z

     (21) 

The regressors are used to identify the normal 

vector  , , ,( , , )k x k y k z knv nv nvnv  of each patch. 

Using the geometry of an inclined plane the 

'geometric shear stress'  geo  caused by the slope 
of element k  in x-direction is derived from the 
normal vector with: 

 
, ,

,

tan

geo

x k x k

k

z k k

nv

nv p


  .  (22) 

The resulting total geometric shear of the whole 
surface in contact is acquired with the 
summation over the M  elements of the surface 
which is:  

 

,

1 ,

M
x k

k

k z kgeo

x y

nv
p

nv

N N










,  (23) 

whereat we neglect surface patches with 
, 0x knv  as exiting flanks cannot contribute to 

 geo . Furthermore, if a patch is deformed solely 

elastically, the normal vector while in contact is 
assumed to be the mean of the normal vectors of 
both contact elements in contact as E  and   of 
both contact partners are equal for our 
simulations. If the patch is deformed plastically, 
the normal vector of the workpiece becomes the 
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normal vector of the contact patch with which 
the deformed part is in contact. 
 

Fig. 7 and Fig. 8 show xnv  and ynv  respectively 

of the DC04 surface and the stamp surface after 

600meanp MPa of Sec. 3.1. They exhibit a 

uniform distribution in x- and y-direction. 
Although the contact is severe, the change of xnv  

and ynv  is little, but still visible as the amount of 

surface patches with high xnv  and ynv  decreases. 

 

 

Fig. 7. nvx of worktool and workpiece before and 
after contact with pmean=600 MPa. 

 

 

Fig. 8. nvy of worktool and workpiece before and 
after contact with pmean=600 MPa 

 
In order to evaluate the impact of the inclined 
patches on the resulting shear friction, the 
contact simulation of Sec. 3.1 is extended with 
the uncoupled tangential contact model of Sec. 

2.2. This makes it able to compare  geo  with the 

adhesive shear stress  adh  which is caused by 
tangential displacement of both surfaces and 
transferred by the real contact area realA . 

 

In Fig. 9 the resulting geometric shear stress  geo  

and the adhesive shear stress  adh  are depicted 

over the applied normal load meanp . The symbol 

  refers to the contact partners from Sec. 3.1. It 

is evident that  geo  is much lower than  adh  in 

the whole range of meanp . One reason is the 

surface roughness of the stamp surface which is 
much smoother than the DC04 surface. The 
smooth roughness in turn results in inclined 
patches which are little deflected from the 
direction in which the normal contact approach 
occurs and therefore can contribute only little to 

 geo . Hence, a second contact simulation was 
started which differs from the simulation 
denoted by   only in a rougher stamp surface 

with 0.240 maR  and 0.303 mqR . The 

remaining parameters are not changed. The 
resulting shear stresses are denoted in Fig. 9 

with the symbol ◯ . The shear  adh  are for   

and ◯  nearly equal, because realA  differs in 

both cases little. In contrast,  geo  shows higher 

values for ◯  due to the rougher contact 

partner. Nevertheless, the share of  geo  is still 
low as it is expected by literature [12]. 
 

 

Fig. 9 τ in dependency on pmean for case   and ◯ . 

 

 

Fig. 10 τ in dependency on pmean for case   and ◯ . 
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Furthermore, the share of  geo  on the total 
friction resistance is constant in the whole range 
of meanp  which is shown by Fig. 10. Here, the 

ratio  /geo adh  is shown for both   and ◯  

which seems to be independent of meanp . 

 
3.1 Work deformation 
 
The next study aims to determine sliding contact 
of metallic surfaces. Again, the surface of the stamp 
of Sec. 3.1 is used as elastic contact partner. The 
discretization parameters remain also. Similar to 
Sec. 3.1, the elasto-plastic surface is measured 
from an EDT on a 2mm thick sheet metal made of 
DC04. This time, the surface of DC04 reaches 

  6.33mm 2.11mmx yL L  and the surface is 

divided into   384 128x yN N  elements. The 

roughness of the DC04 surface changes to aR =

0.989 m  and qR = 1.201 m . The contact between 

both surfaces is calculated in 257 positions while 
the elastic contact partner slides in positive x-
direction. The normal contact algorithm of Sec. 2.1 
is followed by the calculation of the uncoupled 
tangential contact of Sec. 2.2 for the motion of one 
element width 2a for each position. 
 
After every shift, a new contact configuration 
occurs, in which only one element row has not 
undergone plastic deformation. The work 
expended for the plastic deformation of the new 
asperities is interpreted as the dissipated 

deformation work DefW  and its contribution to 
the frictional resistance is the focus in this 

section. DefW  is equal to the cross-section of the 
grooved track multiplied by the surface 
hardness H  which is required to plastically 
displace the peaks of the surface. The contact is 
simulated for meanp  ranging between 100 MPa 

and 600 MPa in steps of 100 MPa. 
 
Fig. 11 shows the global normal approach 0u  in 

normal direction over the sliding distance x . In 

order to attain the desired meanp , the global 

normal approach has to be adjusted for each 
contact position. The real contact area realA , 

which is the ratio of the surface patches in 
contact to the total surface area, is represented 
in Fig. 12. Although the ratio increases at first 
with x , it stagnates very soon.  

 

As realA  is responsible for the transferable shear 

stress, the derived occurring shear work AdhW  in 
each contact position is directly proportional to 

realA  which is shown in Fig. 13. 

 

 

Fig. 11. global approach u0 in dependency on the 
tangential displacement x. 

 

 

Fig. 12. real contact area Areal in dependency on the 
tangential displacement x. 

 

 

Fig. 13. shear work occurring on each contact postion 
in dependency on the tangential displacement. 

 
As meanp  reaches high values, a huge impact of 

DefW  on the total dissipated frictional work is 
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assumable due to the severe plastic deformation 
of the DC04 surface. However, Fig. 14 shows 

DefW  which is dissipated in each contact 
position and it indicates that the work which is 
necessary to deform the surface asperities is 

very low compared to AdhW .  
 

 
Fig. 14. deformation work occurring in each contact 
position in dependency on x. 
 

 

Fig. 15. ratio /Def AdhW W  in dependency on the 

tangential displacement x. 
 

A distinct clarification is given with Fig. 15 in 

which the ratio /Def AdhW W  is shown in 

dependency on the tangential displacement. As 

the ratio is in the order of 310 , the influence of 
the work needed for the asperity deformation 
has only a minor impact on the total expended 
work due to friction. 
 
 

4. DEDUCTION OF A CONSTITUTIVE  
FRICTION LAW 

 
In this section a constitutive friction law based 
on the experiments of section Sec. 3 is 
presented. It is intended to be applicable for the 
broad range of normal loads occurring in sheet-
bulk metal forming processes. 

If two rough surfaces approach, the initial 
contact is caused by the contact of their 

asperities. The real contact realA  describes the 

contact of these peaks. realA  is smaller than the 

apparent or global contact area 0A . The ratio 

0/realA A  is denoted as rc  in Fig. 16 which is a 

result of the normal contact simulation of Sec. 
3.1. As it can be observed in Fig. 12 and Fig. 13, 

rc  is an important value, because it is a 

measure for the transferable shear stress. Hence, 
the plastic deformation of rough surfaces has a 
major impact on friction as it changes the ratio 
in dependency on the applied contact load. rc  

increases proportionally with meanp  for initial 

contact which is dominated by plastic 
deformation. 
 

 

Fig. 16 share of real contact area on apparent area in 
dependency on contact load. 

 
Although a pressure independent local Tresca 
law was assumed, the behaviour of rc , and 

therewith the behaviour of  adh , is coinciding 
with Coulomb's law of friction which is lead back 

to the linearly rising rc  in dependency on the 

normal load. The real contact area cannot 
become higher than the apparent area which is 

here interpreted as an upper bound for adh  

similar to Tresca's law of friction. 
 
Initial contact is dominated by plastic surface 
deformation, but re- or unloading the same 
contact surface multiple times up to the highest 
experienced normal load is elastic. As the 
potential contact area is already smoothed for 

repeated contact, realA  is higher compared to 

initial contact and the average pressure at the 

same realA  is lower. Therefore, the adhesive 

shear is supposed to be higher for un- or 
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reloading, as long as the historical highest 

sustained normal load histp  is not reached. If the 

contact area is subjected to histp  or higher, the 

contact becomes elasto-plastic again. 
 
Because of these observations, an alternative 
constitutive friction law is developed. The initial 
contact is described similar to Shaw's law of 
friction [7] and it is defined as: 

 
 

 
       

 

1

1
1tanh

2 2

n

y y meann
r rc

p C
m m

H
. (24) 

It is a local friction law based on Tresca's friction 
law in the real contact area. As the actual contact 

area, and therewith rc , grows with meanp  the 

law shows a linear rise of the transferred shear 
stress for low to moderate contact loads similar 
to Coulomb's law of friction. For high contact 

loads, Eq. (24) becomes constant, because rc  

cannot surpass 1. 
  
The parameters 1n  and 1C  are identified 

numerically with the half-space model. H  is the 

surface hardness and  y  is the yield stress of the 

softer material. The parameter m  is Tresca's 
friction factor which has to be measured anyway, 
for instance with a ring compression test. 
 

Considering un- and reloading, the friction law is 

represented by another function as long as meanp  

is lower than histp . The modified law is given by 

 
 


 



 
      

2

2
2tanh

2

n

y meann
r rc hist

rc hist

p C
m p

H p
.  (25) 

It is similar to the initial contact case, where the 
additional parameters 2C  and 2n  have to be 

identified. Additionally, the factor  ( )rc histp , 

which is the ratio of rc  at the maximum 

pressure in the previous contacts, is considered 
to represent the historic sustained contact 
condition. The results of the half-space model 
show a high agreement with the constitutive 
friction law which is shown in Fig. 16. 
 

Sec. 3.2 shows that a worktool surface with low 

aR  and qR , which is common for metal forming 

processes, affects the resulting friction negligible 

since the ratio  /geo adh  is small. Therefore, 

advancing Eq. (24) and Eq. (25) is not necessary. 
However, if the worktool surface is rough, which 

was in the studies 0.240aR m  and 

0.303qR m  or higher, the impact of the 

inclined surface patches of the worktool 
becomes apparent. Although such rough 
worktool surfaces are uncommon in SBMF, 
further studies for the advancement of Eq. (24) 
and Eq. (25) are advisable, as structured 
worktool surfaces are indeed a matter for SBMF. 
One plausible assumption is to add a second 
term to the friction law which gives: 

  


 
 

    
 

,
2

y

r rc mean am f p R   (26) 

for first contact where  ,mean af p R  is a function 

depending on the normal load meanp  and the 

surface roughness aR . 

 
Furthermore, the results of Sec. 3.3 which focus 
on the work that is necessary to plastically 
deform asperities while sliding contact occurs 
also show that no further change of the friction 
law is necessary. If two surfaces move tangential 
to each other new asperities of the undeformed 
surface get into contact. The work necessary to 
deform these surface peaks is very low 
compared to the transferred adhesive work. In 

fact, the ratio /Def AdhW W  shown in Fig. 15 does 

not surpass 0.008 in any simulation. Therefore, 
there is no need to consider the friction 
resistance due to this effect. 

 
 

5. CONCLUSION 
 

The half-space approximation along with its 
extensions is a fast and accurate method to 
determine the elasto-plastic interaction of rough 
surfaces. Only the two-dimensional surface 
boundary has to be meshed and solved for the 
contact problem which comes with a huge 
advantage compared to the conventional Finite-
Element-Method. Although there exist more 
advanced half-space models that consider three-
dimensional plastic deformation, the proposed 
model is already able to precisely predict the 
plastic surface deformation by means of 
roughness parameters. The studies presented 
here consider different aspects of friction, i.e., 
normal contact of rough surfaces, inclined 
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contact elements in the half-space model and 
sliding contact of rough surfaces. They are 
combined and evaluated to accurately treat the 
various contact conditions which arise in sheet-
bulk metal forming. The proposed model uses a 
local friction law of Tresca in the real contact 
area which adopts Coulomb's friction model for 
low to moderate contact loads in the whole 
contact area. The developed friction law consists 
of two equations. The first one represents the 
contact conditions at first loading while the 
second equation takes into account the historic 
pressure and thus makes it able to change the 
friction due to the historic elasto-plastic contact. 
Therefore, it is applicable for un- and reloading. 
If the worktool surface is rough a second term 
describing the roughness in dependency on the 
contact conditions is advisable. However, the 
study presented here is insufficient for the 
distinct determination of this term, which in 
turn can be performed with simulations 

including worktool surfaces with high aR  and qR

. Nevertheless, since sheet-bulk metal forming 
processes mostly include wortkools with low aR  

and qR , the constitutive friction law gives an 

advanced evaluation of the occurring shear 
stresses due to friction. 
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Nomenclature 
 

 ,  ,  regressors for multiple linear 
regression 

rc  ratio of real contact area to 
apparent contact area 

 ,x y  arbitrary surface point 

 ,x y   surface point subjected to 
contact load 

1  and 2  Poisson's ratio of two contact 
bodies 

  contact domain 

y  yield stress 

adh  adhesive shear stress caused 
by tangential displacement of 

contacting surfaces 
geo  geometric shear stress 

caused by inclined surface 
patches 

( , , )x y znv nv nvnv  normal vector which defines 
a contact element of the 

contact surface 

a  and b  half length of a contact 
element in x-direction and y-

direction 

realA  and 0A  real contact area and 
apparent contact area 

C  influence coefficient matrix 

1E  and 2E  Young's moduli of two 
contact bodies 

*E  and E' 
composite elastic moduli 

H  surface hardness 

h  local height coordinate 

maxh  maximum surface coordinate 

k  index of surface element 

l  index of surface elements 
that are in contact 

xL  and yL  length of discretized surface 
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in x- and y-direction 

M  total number of contact 
elements 

mp concrete height points which 
a in a subset 

xN  and yN  number of contact elements 
in x- and y-direction 

p , xq  and yq  local contact pressure and 
shear tractions 

meanp  average contact load at whole 
surface 

aR  centre-line surface average 

qR  root mean square roughness 

S  least-squares function 

s  number of measured points 
in a subset which is used to 

discretize a surface element 
elu  elastic surface displacement 

plu  plastic surface displacement 

0u  global normal approach in z-
direction 

xu , yu  and zu  surface displacements 

AdhW  dissipated work due to 
tangential displacement of 

contacting surfaces 
DefW  dissipated work due to 

plastic deformation of 
surface asperities 

x , y , z  space coordinates 

 


