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 A B S T R A C T 

Health monitoring of bearings is a widely researched topic and has been 
attempted by analysing acoustic, thermal and vibration signatures. The 
methods usually require signal of a healthy bearing to be used as a baseline. 
This limits their use in practical scenarios. This work proposes a kurtosis 
based baseline free method of analysing vibration signals to identify the 
bearing which has generated a fault. It then reports a detailed study on 
empirical mode decomposition technique for extracting intrinsic mode 
functions and suggests a set of steps which are necessary and sufficient for the 
purpose of bearing health monitoring. Thereafter, it compares a few 
dominant frequencies with the expected ones based on known bearing 
dimensions. This process has been shown to be fairly accurate in identifying 
the location of fault in a bearing. 
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1. INTRODUCTION 
 
Bearing health monitoring can have three 
components - detection of anomalous bearing 
behaviour, identification of the specific 
component of the bearing which is defective or 
has undergone unacceptable degradation and 
prediction of remaining life. Tandon et al [1] 
have reviewed various methods for bearing 
health monitoring. Acoustic, temperature and 
vibration measurements are some of the widely 
used methods. All of them have their own 
advantages and disadvantages. Testing the 
lubricant for debris has been shown to be a 
reliable method of identifying the type of fault 
(i.e. the specific region of the bearing causing the 
anomaly). The choice of lubricating oil in 
important in this context [15]. However, the off-
line and periodic nature of this method of 
detection led us to investigate other methods of 

fault type (zone) identification. Continuous 
monitoring is possible with vibration signals if a 
reliable method of filtering and analysing the 
signal can be decided upon. This is what has 
been attempted in this work. 
 
Identification of the specific component of the 
bearing which has developed a fault by 
analysing the vibration signal requires some 
prior knowledge about the type of bearing. For 
roller bearings, the defect can be on the inner 
race, outer race or the rollers. Each of these 
generates a characteristic pulse of a specific 
frequency which depends on the dimensions of 
the different components of the bearing. Lacey 
[2] has discussed this and has given additional 
defect frequencies comprising of the harmonics 
for each of the three defects. Huang et al [3] 
have shown how Empirical Mode 
Decomposition (EMD) can be used to 
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decompose a signal into its components. The 
signal obtained from a bearing usually contains 
significant noise which needs to be filtered out. 
Lei et al [4] show how such de-noising can be 
done using Ensemble Empirical Mode 
Decomposition (EEMD). The use of EMD 
requires a number of parameters of the 
analysis to be fine tuned as reported in the 
work of Nikolakopoulos and Zavos [16]. Some 
of these aspects, e.g. the stoppage criteria, have 
been investigated by Rilling et al [3] and Huang 
et al [5]. However, a necessary and sufficient 
set of procedures needed to extract useful 
information from bearing vibration data is yet 
to be reported. 
 
A completely different approach - use of Self 
Organising Maps - has been explored by Qiu et al 
[6]. They have used data generated by NSF 
I/UCRC Centre for Intelligent Maintenance 
Systems for analysis and have attempted to 
assess the state of degradation of bearings. 
Wavelets have also been used to identify 
presence of fault and a review of papers on this 
topic is given by Kumar et al [7]. However, the 
advantage of using EMD over wavelet 
decomposition or fourier transform for 
analyzing real life signals which can arise from 
multiple reasons is also well documented [12-
13]. Yu [8] has applied unsupervised machine 
learning on the NSF data and has attempted to 
predict the presence of bearing fault. Xue et al 
[9] have used auto-correlation followed by 
Intrinsic Mode Function (IMF) extraction using 
EMD and feature extraction to identify the type 
of fault. Noise was found to be a hindrance in 
this procedure. The machine learning methods 
are promising. However, their efficacy needs to 
be compared with the other methods before 
they can be established as a viable alternative. 
This has not been reported so far. 
 
In this paper, we have identified a simple 
statistical measure which can indicate the 
presence or absence of a fault. The fact that this 
is a baseline free method (not requiring past or 
fault free data) makes it attractive for 
application in real life conditions. We have also 
arrived at a sequence of steps for EMD which 
gives the best method of extraction of 
frequencies of defects. This helps in identifying 
the types of the defects based on data mentioned 
by Lacey [2]. 
 

2. DATA SET 
 
The data set used for this work was obtained from 
a NASA Date Repository [10]. Figure 1 shows the 
test bed. The set up consists of four bearings, thus 
generating four sets of data. Rexnord ZA- 2115 
double row bearing was used. Readings were 
taken using PCB 353B33 High Sensitivity Quartz 
ICP accelerometers. Frequency of reading was 20 
kHz and readings were taken for 1.024 seconds, 
thus giving 20480 points in each reading.  

 

 
Fig. 1. Bearing test rig and sensor placement [6]. 
 
Table 1. Data set summary  [4]. 

Duration of 
test 

Number of files 
(points) 

Defect Description 

22/10/2003 

25/11/2003 

2156 

(2156*20480) 

Inner race defect–bearings 3 
Roller element defect–bearings 4 

 

Table 1 gives the summary of test and the bearings 
which failed at the end of test. It may be noted that 
only the type of fault at end of test was reported 
and not the degree of degradation. 
 
 

3. DETECTING  PRESENCE  OF FAULT 
 

The first step in bearing health monitoring is to 
be able to determine if a bearing has a defect or 
not. It is known that when a roller passes over a 
defect, a high amplitude pulse is generated 
which can be sensed by an accelerometer. Figure 
2 shows signals from a healthy and a defective 
bearing. The increase in amplitude because of a 
defect is easy to detect if data of a healthy 
bearing is available. In practice, one is often 
called upon the take a decision on the presence 
or absence of a fault based on data collected only 
in a single window. This requires a baseline free 
method for making the decision. This is what has 
been attempted in this section. 
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Fig. 2. (a) Signal of healthy bearing, (b) signal of defective bearing. 
 

 
Fig. 3. Kurtosis plot of Test 1 Data. 

 
One way to characterise the peaks of such 
signals is by kurtosis. In Fig. 3, y axis is the 
kurtosis of one instance of reading (20480 
points in our case) and x-axis is the reading 
number, which is also representative of time. 
The test consisted of 2156 files, of which we 
have considered equally spaced 350 files 
(spread over three days) for our analysis. It can 
be seen that development of fault is 
accompanied by a sharp rise in kurtosis for 
bearings 3 and 4.  
 
We can see that this simple method is effective in 
detecting the presence of fault in bearing. We also 
propose that a kurtosis of 6 may be taken as the 
threshold. A significant number of readings with a 

kurtosis above 6 can be taken as an indicator of a 
bearing having developed a fault. The advantage 
of this method is that it does not require any past 
data or history of bearing readings. 
 
 

4. EMPIRICAL MODE DECOMPOSITION 
 

This section will give a brief description of EMD 
which will be used to determine the type 
(location) of fault. EMD allows the signal to be 
decomposed into Intrinsic Mode Functions 
(IMFs) based on the time characteristic of signal. 
The algorithm is: 

1. Let the given data be xmain 
2. x=xmain 

(a) (b) 

Kurtosis = 3.48 Kurtosis = 14.72 
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3. Calculate the maxima and minima of the x 
4. Draw a spline through the maxima and a 

separate spline through the minima 
5. Calculate the mean: mean =(maxima 

spline + minima spline)/2 
6. Subtract this mean from the signal x and 

get a new x as x=x-mean 
7. Repeat processes 3 to 6 till we get an 

IMF. The signal at end of step 6, after a 
number of iterations, is the first IMF. 

8. Subtract the first IMF from the original 
data: xmain=xmain - IMF and go back to 
step 2 and use this as new data to get the 
second IMF. 

The first IMF will have the highest frequency, the 
second IMF will have the second highest frequency 
and so on. Figure 4 shows the various steps of a 
typical example. Figures 4(a) and 4(b) show tone 
and chirp which have been combined into a single 
signal in 4(c). This combined signal is the input to 
our analyser and on performing EMD we get two 
IMFs 4(f) and 4(g), which are the tone and chirp. 
Figure 4(d) shows one iteration where we have 
plotted the spline for maxima and minima and 
their mean. The blue curve is a spline through the 
maxima, the orange curve is a spline through the 
minima and the pink curve is the mean of these 
two splines. Figure 4(e) displays the residue left 
after subtracting the mean from the signal. This is 
same as step 6 in the above algorithm. This 
procedure is repeated several times to get the 
IMFs. 

 
4.1 De-Noising [4] 

 
Every real life signal contains some noise which 
needs to be filtered out. Ensemble Empirical 
Mode Decomposition (EEMD) is one method of 
achieving this. In this we add white Gaussian 
noise to the signal and then extract the IMF. 
Then we again add white Gaussian noise to the 
original signal and repeat the same procedure. 
White noise is generated randomly and so it is 
different every time. So, the two IMFs differ a 
little from each other. The average of the two 
IMFs is a better indicator of the constituent 
signal than the IMF extracted without adding the 
white Gaussian noise. Instead of two, we can 
take 50 or 100 such IMFs and average them out. 
This has been shown to be an effective 
procedure for de-noising the signal. 
 

 
Fig. 4. EMD Iterations [14]. 

 
Figure 5(a) shows a sine wave with some noise 
at the peak. 100 copies of the signal were made 
by adding different white Gaussian noise to each. 
The average of the first IMF extracted from these 
100 signals is shown in Fig. 5(b). The first IMF 
extracted from the original signal is shown in 
Fig. 5(c). The superiority of EEMD is 
demonstrated by the fact that Fig. 5(c) shows 
some sine component mixed with the IMF. This 
is called mode mixing. The second IMF shows 
greater undershoot and overshoot in the EMD 
than in the EEMD. 
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Fig. 5. (a) Sine wave with noise, (b) EEMD with 
average of 100, (c) EMD. 

 
The efficacy of EEMD comes at a cost of extra 
computing effort. Thus, a decision needs to be 
taken on whether or not to prefer it over EMD 
and if so, how many instances of white noise 
addition needs to be done. This would be 
dependent on the specific application and a 
study was conducted to ascertain this for the 
current study on bearing vibration signals. Both 
EMD and EEMD were applied on the bearing 
data. The difference in results was not found to 
be significant enough to justify EEMD. Thus, the 
rest of the work used EMD rather than EEMD. 

 
4.2 Curve Fitting 

 
A critical decision in EMD is the choice of the 
curve which needs to pass through the maxima 
and minima of the signal. This is usually a spline. 
However, improper selection of end conditions 
can lead to overshooting and undershooting. The 
usual technique of averaging the maxima (or 
minima) near the end may not be effective as 
shown in Fig. 6. In both Figs. 6 and 7, the blue 

curve is the original signal and the red curve is a 
spline drawn through the maxima. The problem 
of excessive undulation between two points 
(maxima or minima) may remain even with 
proper end conditions as seen in Fig. 6(a). 
Piecewise cubic hermitian interpolation [11] was 
found to give the best result (Fig. 7) and was 
adopted for the rest of the work. 
 
4.3 Stoppage Criteria  

 
IMF extraction involves repeated subtraction of 
the mean of the maxima and minima splines 
from the signal, as explained in a previous 
section. Repeated iterations result in a better 
(more accurate) IMF. However, this comes at the 
cost of computational effort and time. An effort 
was made in this work to determine the 
appropriate criterion to stop the iterations. Huang 
et al’s [3] method is based on the difference in 
deviation (as defined in equation 1) between IMFs 
extracted in two successive iterations. A low 
difference indicates time to stop. 
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where:  T= Total time of reading, hn-1(t) = residue 
obtained after n-1 iterations, hn(t) = residue 
obtained after n iterations. 
 

 

 
Fig. 6. (a) Spline interpolation with end conditions 
specified (b) Spline interpolation with no end 
conditions. 

(a) 
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Fig. 7. Piecewise Cubic Hermitian Interpolation. 
 

It was found that a difference of 0.2 to 0.3 
between successive deviations is a reasonable 
stoppage criterion. 
 

Another criterion explored was a point by point 
comparison of the IMFs extracted in successive 
iterations and stopping when the difference 
becomes less than 10 % of maximum. It was 
found that this difference does not always show a 
monotonically decreasing trend. Thus, two sub-
criteria were explored – the difference being less 
than 10 % for the first time and the difference 
being less than 10 % for a significant number of 
iterations. The latter gave better results. 
 

The results obtained by these refined stoppage 
criteria were compared with those obtained by a 
simple criterion, namely a fixed number of 
iterations as suggested by Rilling et al [5]. The 
latter was found to give results quite 
comparable to those of the earlier methods at a 
much lower processing time. Our data allowed 
good IMF extraction at 8 iterations whereas the 
earlier methods required 50 to 100. Thus, the 
criterion of using a fixed number of iterations for 
IMF extraction was recommended and used for 
the rest of this work. 
 
 

5. DEFECT IDENTIFICATION 
 

The formulae for fundamental defect frequency 
for roller bearings where inner race rotates have 
been given in equations 2, 3 and 4 [1]. 

Outer race defect frequency    


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Rolling element defect frequency  
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where, fs= speed of shaft rotation in Hz 
z=number of rolling elements 
D=pitch diameter 
d=roller diameter 
α=contact angle 

 

 
Additional fault frequencies based on harmonics 
as given by Lacey [2] are listed below in Table 2. 
 
Table 2. Bearing Defect Frequencies [2]. 

Surface Defect 
Frequency 

Component Imperfection 

Inner 
Raceway 

Eccentricity sf  

Waviness sci fnZf   

Discrete Defect sci fnZf   

Outer 
Raceway 

Waviness conZf  

Discrete Defect 
sco fnZf   

coco fnZf   

Roller 
Element 

Diameter Variation coZf  

Waviness cob fnf 2  

Discrete Defect cob fnf 2  

 

where,  fs = speed of rotation 

             Z = number of rolling elements 

             n = index starting from 0 
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Table 3 shows the dimensions of bearing ZA-
2115 used for this study and associated fault 
frequencies as obtained from these formulae. 
 
After extracting the IMFs we take the first 10 
dominant frequencies in the IMF 1 and IMF 2 
and compare them with the expected defect 
frequencies to decide on the type of fault.  
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Table 3. ZA-2115 bearing dimensions and defect 
frequencies. 

Quantity Value 

Pitch Diameter 71.5 mm 

Diameter of Rollers 8.4 mm 

Number of Rolling Elements 16 

Contact Angle 15.17o 

Rotating Frequency 33.333 Hz 

Outer race defect frequency  ( fod) 236.43 Hz 

Inner race defect frequency  ( fid ) 297 Hz 

Rolling element defect frequency  ( fre ) 280 Hz 

 

Figure 8 is the plot of FFT of IMF 1 of a certain 
bearing which has already developed a fault. In 
Table 4 we have also listed the top 10 dominant 
frequencies. We can see that the plot is 
dominated by high frequencies which are not 
relevant to our investigation. Many options were 
attempted to get rid the FFT plot of the 
unnecessary high frequencies. The one which 
showed the best result was squaring of the IMF 
and then taking its FFT. 
 

 
Fig. 8. Plot of FFT of IMF 1 of a faulty bearing. 
 
Table 4. Dominant frequencies in plot 8. 

Dominant Frequencies 

4022.5 

4182.6 

3949.2 

4024.4 

4174.8 

3949.2 

4037.1 

3963.9 

4039.1 

3978.5 

Figure 9 shows the corresponding plot and the 
dominant frequencies are shown in Table 5. The 
high frequencies have clearly been suppressed 
and the frequencies in our range of interest are 
now available. We see the presence of frequency 
around 232 Hz and 280 Hz, denoting that there is 
a fault in the bearing which is actually the case. 
 

 
Fig. 9. Plot of FFT of square of IMF 1 of a faulty 
bearing. 
 
Table 5. Dominant frequencies in plot 9. 

Dominant Frequencies 

0 

14.65 

465.82 

261.72 

276.37 

232.42 

72.27 

698.24 

73.24 

464.84 

 
Another option is to smoothen the IMF itself. 
Just like in EMD, one can detect the maxima in 
the IMF and pass an interpolating curve through 
it and take its FFT. Figure 10 shows the results 
obtained by this alternative. The frequencies 
that we get by smoothing, shown in Table 6, are 
more relevant than what we get by squaring. As 
an example, consider the value 33.33 Hz present 
in third case, which is the frequency of shaft 
revolution and indicator of a particular defect. 
This is not seen when we square the IMFs. Thus, 
in our further analysis we have used the method 
of smoothing and then calculating the dominant 
frequencies. 



S. Shah and A. Guha, Tribology in Industry Vol. 38, No. 3 (2016) 297-307 

 

 304 

 
Fig. 10. Plot of FFT of smoothen IMF 1 of a faulty 
bearing. 

 
Table 6. Dominant frequencies in plot 10. 

Dominant Frequencies 

0 

14.65 

465.82 

232.42 

261.72 

464.84 

276.37 

698.24 

33.203 

72. 27 

The previous sections have described the large 
number of options available while 
implementing EMD. Through a systematic 
study it was possible to arrive at a 
combination of these options which is 
reasonable and practical for bearing health 
monitoring. The ensuing section will describe 
how this was applied to the data set of Table 1. 
 
 
6. APPLICATION OF EMD 

 
Out of the 2156 files (Table 1), 350 were chosen 
such that the data pertained to readings taken at 
approximately 1 hour intervals. The EMD 
procedure described in the previous sections 
was implemented. The IMFs were smoothened 
and the dominant frequencies were detected. 
 
In Figures 11 to 13, x-axis indicates reading 
number and y-axis shows the number of fault 
frequencies present in the first 10 dominant 
frequencies of the IMF. Figure 11 shows plots in 
which we compare the top 10 dominant 
frequencies present in the IMF with frequencies 
obtained in equations 2 to 4. If a particular 
frequency is present then we get +1 for the 
reading, if two frequencies match then we get 
+2 and so on. This is done for both IMF 1 and 
IMF 2. 

 

 
Fig. 11. Results of Test 1 based on equations 2 to 4. 
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Fig. 12. Results of Test 1 based on Table 2. 

 

 
Fig. 13. Results of Test 1 without extracting IMF and based on Table 2. 

 
Figure 12 shows the results when the 10 
dominant frequencies are compared with 
frequencies obtained by equations given in 
Table 2. 

 
In Figure 11, the plots for bearings 1 and 2 show 
low values indicating that the dominant 

frequencies present in the first two IMFs for 
bearings 1 and 2 correspond to very few fault 
frequencies calculated by equations 2 to 4. For 
bearings 3 and 4 we see an increase in the 
number of matching fault frequencies at the end 
of its life. Bearing three has an inner race fault 
and this can be easily identified. Bearing 4 is 
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reported to have a roller element fault and this 
too can be concluded. However, the plots also 
indicate the presence of inner and outer race 
faults for bearing 4. 
 
This has not been reported in the information 
available about the test. This leads to the 
tentative conclusion that inner and outer race 
faults can be definitively identified by the 
procedure suggested in this paper. However, if 
roller element faults are present, they can be 
identified, but may give rise to false positive 
signals for inner and outer race faults. 
 
Figure 12 was generated by comparing the 10 
dominant frequencies with the frequencies 
obtained by the equations of Table 2. This was 
done with the expectation that comparison with 
the higher harmonics would lead to easier 
differentiation between cases of high and low 
number of matches. Unfortunately, this did not 
turn out to be true. Figure 12 show that an 
attempt to include higher harmonics in this 
analysis leads to an obfuscation of the difference 
between data with and without faults. 

 
Figure 13 shows an attempt to repeat the 
analysis by using the original signal and not the 
IMFs. This is shown to be a failure, thus 
establishing the need for IMF extraction through 
EMD as a prerequisite before extracting the 
dominant frequencies through FFT. 
 
 
7. CONCLUSION 

 
This paper attempts to establish a method of 
analysing vibration signals of bearings for their 
health monitoring. Out of the three primary tasks 
in this exercise, namely, identification of the 
bearing which has a fault, detection of the region 
of the bearing which has developed a fault and 
prediction of the remaining useful life of a 
bearing, this paper attempts the first two. 
Identification of the bearing which has developed 
a fault has been shown to be possible by a 
kurtosis plot - a value higher than 6 indicating the 
presence of a fault. The baseline free nature of 
this parameter makes it easily applicable to 
practical situations where data for a completely 
undamaged bearing may not be available. 
 
Detection of the region of the bearing which has 
developed a fault requires extraction of IMFs 

from the signal with EMD. This paper explores 
the large number of options available at various 
stages of EMD and suggests a set of options 
which are necessary and sufficient from the 
point of view of bearing health monitoring. A 
method of comparing the first 10 dominant 
frequencies with the expected frequencies led to 
a clear identification of the faults along with a 
possibility of false positive signals in the 
presence of a fault in the rolling element. 
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