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 A B S T R A C T 

The hydrodynamic bearings are stressed by severe workings conditions, 
such as speed, load, and the oil will be increasingly solicit by pressure and 
shear. The Newtonian behavior is far from being awarded in this case, the 
most loaded bearings operating at very high speeds; the shear rate of the 
oil is of higher order.  
 A numerical analysis of the behavior of non-Newtonian fluid for plain 
cylindrical journal bearing finite dimension coated with antifriction 
material with a high tin content, for to facilitate the accommodation of 
the surfaces and save the silk of the shaft in the case of a contact. this 
analyses is implemented using the code-ANSYS CFX, by solving the energy 
equation with the finite difference method, considering that laminar 
regime and the fluid is non Newtonian by using the power law Ostwald 
model, the coefficient n is equal to 1.25 and for different model such as 
Bingham, cross and Hereshek-Bulkley model. 
This study aims to better predict the non-Newtonian behavior of the oil 
film in bearings operating under more severe conditions. The purpose 
conducted during this study is to predict the effect of non-Newtonian 
behavior of the film; the journal bearing operating under severe 
conditions, the speed of rotation varies from 1000 to 9000 rpm and the 
bearing working under radial load 2 to 10 kN. Temperature and the 
pressure within the fluid film assumed non-Newtonian are high, with a 
coefficient n greater than 1 that is to say for viscoelastic fluids. 
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1. INTRODUCTION  
 
The non-Newtonian effects can be of two kinds: 
the shear-thinning effects and viscoelastic effects. 
The shear-thinning effects, often simply called 
non-Newtonian effects, result in a variation of the 

viscosity versus shear rate. The viscoelastic effects 
are more complex, but in simple terms, we can say 
that the viscoelastic fluids have a memory of their 
deformities. There are several models that can 
represent the viscoelastic behavior. Among them, 
the simplest and most used is the Maxwell model, 
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which takes into account two parameters: 
viscosity and relaxation time. 
 
The plain journal bearing have been largely used 
in industrial applications for more than a 
century. However, the thermal behaviour in the 
journal bearing became only recently the object 
for the researchers, while considering the fluid 
has a non-Newtonian behaviour. 
 
Hirst and Moore [1] present a study in 1974 on 
non-Newtonian behavior in the 
elastohydrodynamic lubrication, they stated in 
their study that low values, the shear rate is 
directly proportional to the shearing force, but 
higher values, the shear rate increases faster than 
the shear stress, this phenomenon depends on 
the pressure and molecular size of the fluid film. 
 
In 1985, Hutton [2] performs an experimental 
study on the effect of lubricant on the u 
performance sliding bearing, the experimental 
results performed on a bearing in order to verify 
the theory that the capacity of the load is 
generated by the elasticity viscoelastic lubricants. 
 
Gecim [3] published in 1990 a review of the 
literature on shear-thinning effects. He shows 
some examples and technical solutions for the 
treatment of non-Newtonian effects in plain 
bearings. He introduced a new incorporating act, 
based on the Cross of law. The advantage of this 
law is that it has a single parameter to adjust 
(the stability coefficient), compared to the Cross 
equation which uses three parameters. 
 
During the same period, Rastogi and Gupta [4,5] 
analyze the importance of viscoelastic effects in 
bearings subjected to dynamic loads that they 
use the Maxwell model. They showed a decrease 
Load carrying capacity in the presence of a 
viscoelastic behavior. 
 
Lemaitre and Berker [6] realized two years later 
a study on the modeling of non-Newtonian 
effects in plain bearings. They propose an 
extension of the cavitation Elrod algorithm for a 
non-Newtonian behavior of the fluid, using the 
finite volume method. 
 
In 2000, Zhang and Cheng [7] propose a non-
Newtonian thermohydrodynamic analysis in 
conditions of mixed lubrication. Both non-
Newtonian effects (shear thinning and 

viscoelastic) are included. They show that there 
is significant influence of the shear thinning 
effect on the minimum thickness on the power 
loss and leakage flow dynamic bearings. 
However, the viscoelastic effect has no 
significant influence on these parameters and 
can more or months influence the load capacity 
bearings, compared to operating conditions. 
 
In 2001 and 2002 Wang et al. [8,9] have also 
addressed the influence of shear thinning effects 
in dynamic bearings, while taking into account 
the non-Newtonian behavior and the effect of 
the geometry of the elliptical -form palier- ave 
rough surfaces. They show that it has a 
significant reduction in the minimum film 
thickness and power dissipation. 
 
In the same year, Zhang [10] continues the study 
with an analysis TEHD dynamic bearings. It 
happens almost the same conclusions as in the 
THD study. Moreover, he argues that the 
viscoelastic effect tends to reduce the variation 
of pressure over time and thus reduce the 
pressure peaks and the elastic deformation. 
 
In 2003 Kane [11] show the effect of the 
roughness and non-Newtonian effects in severe 
contact lubricated such as bearings. He 
presented a new modified Reynolds equation 
called non-Newtonian, using the rheological 
laws and the basics of continuum mechanics 
applied to thin film. Solving this equation gives 
the influential parameters on geometry and 
rheology, these results were validated with the 
non-Newtonian theory. 
 
Fatu [12] in 2005 present a numerical and 
experimental modeling of the lubrication of motor 
bearings subjected to severe operating conditions 
with the laws of variation of the suitable viscosity, 
it stinks meter highlight the respective influence of 
non-effects Newtonian and piezovisqueux in the 
complex case of big end bearings. Fatu showed 
that piezovisqueux effect turns out to be most 
significant effect on the behavior of the bearing, 
the non-Newtonian effect. 
 
In 2012, Singh and al [13], present a study on the 
performance of pivoted curved slider bearings 
by suggest that the fluid is non Newtonian, by 
using the Rabinowitsch Fluid Model. The results 
show that steady state film pressure, load 
carrying capacity and centre of pressure, 
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calculated numerically for various values of 
viscosity index, have been significant with the 
non-Newtonian behavior of the fluid. 
 
Javorova and his colaborators, have been 
presented in 2016 [14], a study on 
hydrodynamics Journal Bearings Considering 
Elastic Deformation and Non-Newtonian fluid, 
by using the Rabinowitsch fluid model. They 
have showed that higher values of film pressure 
and load carrying capacity have been obtained 
for dilatant lubricants, while for pseudoplastic 
lubricants; pressure in oil film is less significant. 
 
The present study investigates the effect of 
temperature in laminar regime by resolution of the 
energy equation with the finite difference method. 
This analysis studied the impact the behavior non-
Newtonian fluid for journal bearing working under 
sever operating condition. The non-Newtonian 
behavior of lubricants (oils containing polymers 
PM3) was analyzed numerically. Moreover, the 
fact that the oils containing polymers should have 
a decrease in viscosity and normal stress at a high 
shear rate, so having a non-Newtonian behavior, 
rheological properties were examined according to 
the levels of operating conditions by Moritsugu 
KASAI in 2010 [15]. 
 
 
2.   THEORETICAL ANALYSES 
 
In order to theoretically predict the temperature 
field throughout a plain bearing, one ought to 
create a 3D thermohydrodynamic theoretical 
model. The schematic representation of the 
journal bearing is presented in Fig. 1. 
 

 

Fig.1 Schematisation of plain journal bearing 

 
 

OS 

OB

 RS 

RB 

 

e 

W 

 

X 

Y 

 
Fig. 1. Schematisation of plain journal bearing. 

2.1   Basic Equations 
 
The equation describing the flow in the gap is the 
generalized Reynolds equation (Dowson, [16]).  
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In order to get pressure field, Reynolds type 
boundary conditions are considered. The 
boundary conditions for pressure are 
summarized by the following equations: 

- at the bearing sides: 

  02/, Lp                              (3) 

- At the limit of the rupture zone traditional 
Reynolds boundary conditions are 
applied: 
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The temperature in the bush is given by the 
bidimensional energy equation in polar 
coordinates: 
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The temperature in the shaft is supposed to be 
uniform in the circumferential direction, due to 
its rotation; the energy equation reduces to a 
unidimensional form: 
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Heat flux continuity condition was imposed at 
the interface between the oil film and the shaft: 
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While at the interface between the oil film and 
the bush the heat flux continuity condition is: 
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The initial temperature condition for the 
transient problem is: 
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2.2 Empirical relationships for viscosity 
 

When the viscosity is not independent of shear rate, 
it is necessary to use several parameters to describe 
the mechanical behavior of the fluid. A number of 
empirical models provide this description. 
    
2.2.1 Pseudo plastic Fluids 
 
Fluid conducting a pseudo-plastic viscosity 
decreases when the shear stress increases, their 
rheological behavior are not linear these are 
monophasic oils such as heavy oils. 
 
a) Model of power law Ostwald:  In a certain 
range of shear rates, the viscosity can be 

represented as a power law, 


  particularly for 

molten polymers: 
1
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Newtonian fluid corresponds to n = 1 and a 
shear-thinning fluid is represented by n <1. 
 
The model of the power law can be used for 
fluids such as rubber, adhesive, polymers or 
certain body fluids for isothermal flow. In the 
case where the temperature varies in the field, it 
is possible to introduce the temperature T: 
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b) Carreau model: The tile model is an 
extension of the power law model that involves 
five parameters: 
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where 0  is the zero shear viscosity,   

viscosity at infinite shear, time constant,  is an 
exponent of power law and is a parameter that 
describes the transition from the low shear and 
power law behavior region. 
 
2.2.2 Viscoplastic oils 
 
The nonlinear viscoplastic oil are characterized 
by a shear threshold it has two phases: liquid 
and solid as example fats. In this section we 
present the fluids and Bingham Hereshek-
Bulkley. 
 
a) Bingham model 
 
The Bingham fluid viscoplastic are characterized 
by a single elastic ι0, over which the said fluids 
behave as Newtonian fluids. The viscosity is is 
expressed by: 
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where µ0 reference viscisity. 
 
b) Hereshek-Bulkley model 
 
The model Hereshek-Bulkley presents the 
nonlinear case from that of Bingham, this model 
is a combination of yield strength and plastic 
nickname behavior of the power law, this law is 
presented in the following form: 
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2.2.3 Expression of the pressure field with 
non-Newtonian behavior oil film 

 
Eg the power model Ostwald, the relationship of 
the pressure field is given in the following form: 
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2.3 Thermal Deformations 
 
The thermal deformations of the bush and shaft 
may have important influence on the bearing 
behaviour, the thermal displacement relative to 
the shaft radius the initial temperature, T0, is 
Timoshenko and Goodier in 1974 [17]: 
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The thermal displacement of the bush )(Bu is 

computed using the Finite element method. 
 
2.4    Film thickness 
 
Due to the thermal deformations of both the 
shaft and the bush, the film thickness is given by 
the following expression: 

    )()cos(1  Ch        (10) 

with: 
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3. NUMERICAL RESOLUTION ON THE 

THERMOOHYDRODYNAMIC EFFECT OF 
THE BEARING ON TRANSIENT REGIME 

 
In this part, we present the transient analysis on 
speed effect for plain journal bearing and for 
thermohydrodynamic behaviour in lubricated 
mechanism.  
 
This study is carried out by the ANSYS CFX code 
for obtain the pressure field distribution with 
energise equation resolution, by using the Finite 
Differential Method. The both shaft and bush 
deformation is obtained with displacement 
equation resolution by Finite Elements Method. 
The discretization of the geometry in a number 
of elements finished well is presented in Fig. 2. 
In this meshing, nodes number is 31200 and 
element number is 244201. 
 

 

 
Fig. 2. Finite element mesh of the bearing. 
 
3.1   Results and Discussed  
 

The main features of the bush are presented in 
Table 1. 
 
Table 1.   Operating conditions and geometric 
characteristics of the journal bearing. 

Bearing diameter 
Bearing lemgth 
Radial clearance 
Length of supply groove 
Food opening diameter  
Lubricant type 
Density of oil 
Specific heat of lubricant 
Oil viscosity at 40ºC 
Oil viscosity at 80ºC 
Rotational speed  
Radial load 
Ambient temperature 
Supply pressure 

D  (mm)                 100 
L  (mm)                   80 
C (mm)                  0.09 
Lg (mm)                  70 
do (mm)                  14 
                               
PM3  
 (kg/m3)               800 
Cp (j/kgK)            2000 
  
1 (mmª/s)           17,49              
 2 (mmª/s)          8,003 
 N (r/min)       1000-9000 
 W (kN)                 2-10 
 Ta (ºC)                   60 
 Pa (MPa)             0.04   

 

Pressure/Temperature  
 

1) Velocity variation for load 2000 N and n=1.25 
 

Pressure 
 

1000 rpm          3000 rpm             5000 rpm 

   
7000 rpm        9000rpm 

  
Fig. 3.  3D view for pressure distribution. 
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Maximum pressure according rotational velocity 
for radial load 2000 N and for power law 
Ostwald model, the coefficiet n is equal to 1.25, 
Is preseted in Fig. 4a. Import values for pressure 
is noted for higly velocity (9000 rpm). Increses 
is estimated of 90 per cent for velocity ranging of 
1000 to 9000 rpm. 
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Fig. 4a.  Maximum pressure according rotational 
velocity for radial load 2000 N and n=1.25 Model of 
power law Ostwald. 
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Fig. 4b. Circumferentiel pressure for different 
rotational velocity and  for radial load 2000 N and 
n=1.25 (Model of power law Ostwald). 

 
Pressure distribution of the median plain 
cylindrical journal bearing for rotational velocity 
1000 to 9000 rpm and for radial load 2000 N, is 
illustrates in Fig. 4b, for power law Ostwald 
model with n = 1.25.  
 
The maximum pressure increases up to 180000 
Pa for rotational speed ranging from 1000-9000 
rpm, the increase is estimated by 76 per cent. It 
is situated at angular coordinate 170° and 190°. 

There is the creation of the rupture zone of 
highly significant oil film, for Angular coordinate 
200° to 250° for a bearing operating under 
velocity of 9000 rpm and for radial load 2000 N. 
The pressure drop reaches 0.08 MPa.  
 
Figure 5 show the pressure distribution of the 
median plain cylindrical journal bearing for 
radial load 2000, 6000 and 10000 N and for 
rotational velocity 9000 rpm, for power law 
Ostwald model with n = 1.25.  
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Fig. 5. Circumferentiel pressure for different radial 
load  for velociy  9000 rpm and n=1.25 (Model of 
power law Ostwald). 

 
The significate pressure values is noted for 
radial load of 10000 N, and the rupture zone is 
highly significant for radial load 10000 N. 
 
Temperature  
 
Temperature evolution in medi n plain journal 
bearing for velocity ranging of 1000 to 9000 rpm 
is presented in Fig. 6. This figure shows clearly 
that sigignificat temperature is obtain for velocity 
7000 and 9000 rpm, for bearing subjected to 
radial load 2000 N and lubricat by non newtonein 
fluid with coefficient n equal to 1.25. 
 
      1000 rpm               3000 rpm                5000 rpm 

   
                         7000 rpm            9000 rpm 

  
Fig. 6.  3D view for temperature distribution. 
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The Average temperature according rotational 
velocity for radial load 2000 N and n=1.25 
(Model of power law Ostwald), is shown in Fig. 
7a, obtained from the numerical analysis in 
6000, 9000, 11 000, 13 000 and 15 000 rpm and 
a radial load of 2000 N. The feeding condition is 
presented in the Table 1. An increase of 
temperature is estimated of 4 per cent with 
increases the velocity from 1000 to 9000 rpm.  
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Fig. 7a. Average temperature according rotational 
velocity for radial load 2000 N and n=1.25 (Model of 
power law Ostwald). 
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Fig. 7b. Average temperature for different rotational 
velocity for radial load 2000 N and n=1.25 (Model of 
power law Ostwald). 

 
However, the Fig. 7b illustrates the distribution 
of the average temperature in median plan for 
journal bearing. Rotational velocity is ranging of 
1000 to 9000 rpm. The bearing is subjected to 
radial load of 2000 N and fluid low is considered 
non-Newtonian fluid. This figure shows clearly 
that the significant temperature is located for 
angular coordinate 50° to 120°. The import 
values are noted for velocity of 9000 rpm. 

Figure 8 presents the circumferentiel distribution 
of temperature for different radial load (2000, 
6000 and 10 000N) and for rotational velocity 
9000 rpm,  n=1.25 (power law Ostwald model). 
The maximum values for temperature is noted for 
low radial load (2000 N). 
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Fig. 8. Circumferentiel temperature for different 
radial load and for rotational velocity 9000 rpm 
n=1.25 (Model of power law Ostwald). 

 
These digital temperature results were validated 
with experimental results; that were presented 
by the Bendaoud and al in 2012 [17] while 
considering the fluid is Newtonian, Fig. 9.  
 
Figure 9 present circemfereciel temperature 
ditribution for radial load 2000 N and rotational 
velocity 5000 rpm for experiment data and 
Numerical resul for fluid newtonian. The Search 
result is a reasonable agreement, the gap is 
estimated 6 per cent. 
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Fig. 9. circemfereciel temperature ditribution for 
radial load 2000 N and rotational velocity 5000 rpm. 
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2) Pressure and temperature for different (n) 
for load 2000N and velocity 1000 rpm 
 
Maximum pressure for different n for power law 
Ostwald model is presented in figure 10, for 
radial load of 2000N and rotational speed 1000 
rpm. The maximum value for pressure is obtain 
for n equal to 1.5 and is estimates by 250000 Pa. 
Pressure increase with increases of the 
coefficient n, this increase’s is estimated by  65 
per cent. 
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Fig. 10. Maximum pressure for different n (Model of 
power law Ostwald). 

 
For the variation of the average temperature 
(Fig. 11), Temperature is significate for 
coefficient n equal to 1.5. 
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Fig. 11.  Average temperature for different n (Model 
of power law Ostwald). 

 
Figure 12 presents the variation of the friction 
coefficient according rotational speed 1000 to 
9000 rpm and for radial loads of 2000 N, this 
variation is carried out by power law Ostwald 
with n = 1.25. Friction coefficient has an increase 
(0.005-0.064), is estimated of 80 per cent. 

Maximum value obtains for velocity of 9000 rpm 
is 0.064; this value is between 0.05 and 0.2 (limit 
lubrication). 
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Fig. 12. Friction coefficient according rotational 
velocity for n=1.25 (Model of power law Ostwald). 

 
Figure 13 presents the variation of the 
maximum pressure with velocity variation of 
1000 to 9000 rpm, for tree different radial load 
(2000, 6000 and 10000 N), the fluid is 
considered non-Newtonian with n=1.25. 
Important values are obtained for radial loads 
10000 kN. 
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Fig. 13. Maximum pressure variation according 
rotational velocity for different radial load (Model of 
power law Ostwald). 

 
Average temperature according velocity for tree 
different radial load (2000, 6000 and 10000N) 
for power law Ostwald model with n = 1.25, is 
presented in Fig. 14. The significate values for 
temperature are noted for bearing operating 
under radial load 2000 N. The maximum value is 
328 K. 
 



K. Mehala et al., Tribology in Industry Vol. 38, No. 4 (2016) 575-584 

 

 583 

 

0 2000 4000 6000 8000 10000

312

314

316

318

320

322

324

326

328

330

A
v
e

ra
g

e
 t
e

m
p

e
ra

tu
re

 (
K

)

rotational velocity (rpm)

 2000N

 6000N

 10 000N

 
Fig. 14. Average temperature according velocity for 
different radial load (Model of power law Ostwald). 
 

Figures 15 and 16 illustrates respectively the 
maximum pressure and average temperature 
variation according rotational velocity for 
different non-Newtonian model and for radial 
load of 2000 N. 
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Fig. 15. Maximum pressure variation according 
rotational velocity for different model and load 2000 N. 
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Fig. 16. Average temperature according velocity for 
different model and for load 2000 N. 

The power law Ostwald model gives a realistic 
temperature variation unlike the other model. 
Knowing that the temperature increases with 
increasing the rotation speed of the bearing. 
 
 
4. CONCLUSION 

 
Most oils are considered to have a linear 
variation in the shear stress versus shear rate, 
for some highly additive oils and which operate 
under severe stress; the behavior is no longer 
Newtonian. One speaks in this case, a non-
Newtonian behavior. 
 
To represent these behaviors, we expose a 
numerical study on the behavior of non-
Newtonian fluid with several rheological models 
such as the simplest model of Oswald (also 
known as the power law), Bingham, cross and 
Hereshek-Bulkley model.   The thermal effect 
has been included on the behavior of the bearing 
to obtain the temperature map. The bearing 
alloy coated with an anti-friction high tin 
content (Babbitt 88 % Tin). 
 
Temperature is high and reaches a maximum 
value of 328 K, a bearing for operating at a speed 
of 9000 rpm and which is subjected to a radial 
load of 2000 N. The temperature increases 15 K. 
 
However, the maximum pressure reached a 
value of 0.18MPa and it is noted in the angular 
position of the bearing of from 170 ° to 190 ° by 
varying the rotation speed of bearing of 1000 
rpm to 9000. 
 
Temperature and the pressure within the fluid 
film assumed non-Newtonian are high, with a 
coefficient n greater than 1 that is to say for 
viscoelastic fluids. 
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NOMENCLATURE 
 
cs: specific heat [J/kg.k] 

e: eccentricity [m] 

h: film thickness [m] 

k: thermal conductivity[w/m.K] 

p: pressure [MPa] 

t: time [s] 

us:thermal deformation of the shaft [m] 

uB:thermal deformation of the bush [m] 

x, y: Cartesian coordinate, x = Rs  

C: bearing clearance [m] 

L: bearing length [m] 

OB: bush center 

Os: shaft center 

Rs: shaft radius [m] 

RB: bush radius [m] 

T: temperature [ºC] 

T0: initial temperature [ºC] 

W: load [N] 

 


