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 A B S T R A C T 

The paper investigates optimization of wear behaviour of coconut shell 
ash (CSA) reinforced aluminium composites using pin-on-disc setup. The 
experiments were carried out with three process parameters: Load, 
percentage (%) of CSA and sliding distance. Three adequate responses: 
wear (µm), wear rate (mm3/m) and coefficient of friction were considered. 
In this study, a hybrid approach (i.e. Grey-Fuzzy) has been applied to 
optimizing the several responses. The fuzzy logic concept has been used for 
handling the uncertainty in the decision-making process. Analysis of 
variance (ANOVA) discloses that the highest influencing parameter was 
load, followed by sliding distance and % of CSAp to the overall tribological 
performance. 
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1. INTRODUCTION  

 
Aluminium metal matrix composites (AMC) have 
been widely utilised in transport, structure and 
well-designed applications of defence, aerospace, 
and sports due to the extensive property of 
intrinsic and extrinsic effect of ceramic 
reinforcement with physical, tribological and 
thermo-mechanical properties [1-4]. Generally, 
composites have been prepared with the addition 
of two important materials such as reinforcement 
and matrix. Aluminium and its alloys have 
attracted most attention as base metal in metal 
matrix composites. Therefore, AMCs can be 

prepared by the utilization of various ceramics 
such as SiC, Al2O3, TiO2, graphite, mica, talc and 
boric acid, etc., and agro wastes such as fly ash, 
red mud, colliery shale, rice husk, shell char, 
bagasse, and breadfruit seed. However, there is a 
critical issue in preparation of the composite with 
respect to fabrication, processing, and 
characterization [1,5,6]. 
 
In this work, coconut shell ash was used as a 
reinforcement material. The coconut shell is an 
agro waste, easily available at low cost and can 
be processed to obtain CSA for the preparation 
of AMCs. The coconut shell has high lignin, which 
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supports weather resistance, improves 
corrosion resistance and increases the strength 
of the material [6]. Due to its exceptional 
orientation of structure and low ash content, 
coconut shell is preferable to making the 
activated carbon black [7]. 
 
The literature has shown that, wear rate and 
wear resistance are mostly influenced by the 
load, wt.% of reinforcement, sliding distance, 
sliding velocity and contact surface [8,9]. Sahin 
[8] optimized tribological performance of Al-SiC-
MMCs using Taguchi approach. The size of 
particles was the main influencing parameter in 
wear mechanism, followed by the percentage of 
reinforcement. However, the sliding distance 
may not be significant on overall wear 
performance. Kok and Ozdin [9] investigated the 
wear mechanism of the Al-2024/Al2O3 

composite and reported that wear resistance 
was increased by increasing reinforced particle 
size, percentage of volume and decreases with 
increase of sliding distance, and load. 
Baradeswaran et al. [10] explored the wear 
resistance of HMC reinforced with B4C (10 wt.%) 
and Gr (5 wt.%) using response surface 
methodology. They observed that Mechanical 
Mixed Layer (MML) formed between tribo faces 
of composite was significantly influencing to 
wear properties of the composite. 
  
Rao et al. [11] considered wear behaviour of 
AA2024 reinforced with fly ash particles, which 
results in higher resistance of composite  than 
that of the base alloy at lower loads. The wear 
rises with increasing the load and sliding 
distance due to dislocations and fractured 
particles in the matrix of the composite. Siva et 
al. [12] inspected the mechanical properties, 
abrasion and frictional performance of Al-
colliery shale (CS) and Al-Al2O3 composites 
under forged condition by using pin-on–disc set 
up. They reported that Al-colliery shale 
exhibited better mechanical properties like 
ductility, toughness, stiffness, tensile strength 
and percentage elongation than Al-Al2O3. The 
wear behaviour in the forged condition of Al-CS 
had superior characteristic than Al-Al2O3 and 
base matrix. Aku et al. [13] evaluated 
microstructure, hardness and density of coconut 
shell ash composites having 3-15 wt.%.  They 
found that by increasing the wt.% of 
reinforcement, density decreased and hardness 
values increased.  

Rajesh et al. [14] evaluated the dry sliding wear 
behaviour of SiC reinforced with aluminium 
using Grey –Taguchi approach. The authors 
reported that sliding velocity was the main 
influencing factor than wt.% of reinforcement, 
sliding distance and contact stress.  
 
Moreover, statistical approaches such as Taguchi 
method [15–17], Response Surface Methodology 
[10,18], Grey Relational Analysis (GRA) [14,19–
21]; soft computing techniques (ANN & 
ANFIS[22]) and artificial intelligence such as 
Genetic Algorithm (GA) [23], Particle Swarm 
Optimization (PSO) [24,25], and Teaching-
learning-based optimization (TLBO) [26] 
techniques have been used to optimize the 
process parameters which influence tribological 
and machining behaviour of composites. 
However, it is observed that most of the results 
are not favourable due to the uncertainty 
associated with the process variables. Therefore, 
an attempt has been made in this work that 
optimization of tribological behaviour on the Al-
CSAp composite using hybrid grey-fuzzy 
reasoning approach (GFRA). Three input 
parameters vis-a-vis load, % of CSAp and sliding 
distance are considered to study the responses 
such as wear rate, wear, and coefficient of friction.  
 
 
2. EQUIPMENT AND TECHNIQUES  
 
2.1 Materials and Preparation  
 
In this study, aluminium (Table 1) was used as 
matrix and coconut shell ash was used as 
reinforcement. The aluminium coconut shell ash 
particulate composites (Al-CSAp-MMCs) were 
fabricated by using stir casting technique at 5, 
10 and 15 % by volume. 

 
Table 1. Composition of Al- Si-Fe. 

Fe Si Cu Zn Mn Residual Bal 
0.75 % 0.95 % 0.15 % 0.1 % 0.05 % 0.15 % Al 

 
2.2 Preparation of Coconut shell Ash 

Reinforcement Particles (CSAp) 
 
In this work, CSAp has been prepared by 
crushing the coconut shells in a jaw crusher to 
get small flakes and then these flakes were 
crushed in a hammer mill to produce coconut 
shell pieces/particles. The obtained particles 
were filled into a Gr crucible and placed in a 
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tubular electric furnace at 1420 °C with argon 
atmosphere. Finally, the CSA was classified using 
sieve of mesh size ≤ 240 BSS (63 µm) vibrated 
with rotary sieve shaker. The particles passing 
through the sieve were collected in a pan and 
used as reinforcement in Al-Si-Fe for producing 
Al-CSAp composites. The CSA particles have 
been examined by X-ray diffraction (XRD) 
(Philips PW-1729) to know phases and chemical 
elements that are present by X-ray 
fluorescence (XRF) (SPECTRO) as shown in 
Table 2. Similarly, the density of particles was 
determined by pycnometer method and size of 
particles by laser scattering technique (Malvern 
Master 2000).  
 
2.3 Preparation of Al-CSAp Composite 

 
The compo casting technique was used for 
preparation of Al-CSAp MMCs. In this process, 
the aluminium matrix (Al-Si-Fe) was pre-heated 
at 450 °C and the heating was continued until Al-
Si-Fe melted at 660 °C. The CSA particles were 
pre-heated in an electric arc furnace at 900 °C for 
3 hours and charged into the crucible that 
contains semi-solid melt at a temperature of 645 
°C. This enhanced retention and distribution of 
particles uniformly in the matrix. Thereafter, the 
molten metal and CSAp were stirred with PID 
controlled motor in the presence of argon gas at 
a speed of 600 RPM for 9 minutes to achieve 
homogeneous distribution of reinforced 
particles. The impeller had four blades made up 
of stainless steel material. To avoid reaction 
among aluminium and stirrer material at higher 
temperature, the stirrer was coated with 
zirconia.  The main purpose of supplying argon 
gas is to evade the oxidation. Then, the melt was 
superheated above the liquid temperature at 
690 °C and poured into a preheated (300 °C) cast 
iron mould of the size of 100×20×40 mm to 
obtain an Al-CSAp composite. 
 
Table 2. Chemical Composition of CSA. 

Constituents  wt.% 

Fixed C 04-06 

SiO2 36-40 

Fe2O3 08-09 

Al2O3 23-25 

MgO 02-03 

CaO 03-05 

K2O 0.7 - 0.95 

2.4 Hardness and Tensile Tests  
 

For Al-CSAp MMCs, hardness test using Vickers 
hardness tester (Model: DHV 1000) has been 
performed with an applied load of 100 gm (0.98 
N). On each specimen, five indentations have 
been made, and an average hardness number of 
the examined sample has been considered. The 
tensile properties of the developed composites 
(Al-CSAp) have been tested with Hounsfield 
tensometer (Model: ETM-ER3/772/12) at a 
cross head speed of 1 mm/sec with a maximum 
load of 20 kN, as shown in Fig. 1a. The tensile 
samples were prepared as per ASTM–E8.   

 

 
a) 

 
b) 

Fig. 1. Schematic picture of (a) Tensometer, (b) Pin-
on-disc setup. 

 
2.5 Optical Microscopic Studies  

 
The Microstructural analysis has been 
conducted on the developed Al-CSAp 
composites. Samples were cut from the center of 
cast, polished in accordance with ASTM E-3 and 
finely etched with Keller’s testing agent (ASTM-E 
407). Afterward, the samples were inspected 
using microscope with image process analyzer 
(Infinity Lite, Model No: XJL-17).  
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Table 3. Parameters and their levels. 

Control parameters Symbol 
Level 

-1 0 1 
Load, (N) L 10 30 50 
% of CSAp, (% of vol.) R 5 10 15 
Sliding distance, (m) D 1000 2000 3000 

 

2.6 Wear Test 
 

Wear-tester (Fig. 1b; Model: DUCOM TR-201LE-
PHM-400) has been used for examining wear 
resistance properties of Al-CSAp composites.  
The test samples were prepared as per ASTM 
G99-95 standards, having dimensions ø8 mm 
with 35 mm long. The tested specimens were 
slide against the steel disc (material EN-31), 
having hardness RC 62 with a surface roughness 
of 0.1 (Ra). Before testing, each specimen was 
polished with silica carbide emery paper of grits 
240 follow-ups to 600 grits. Moreover, the 
experiments were conducted at a constant track 
of 50 mm diameter. The test samples were 
cleaned with acetone and measured their 
weight, by weight loss method using an 
electronic balance of accuracy 0.001 g. The 
difference in weights before and after wear of 
the sample was considered as weight loss. Wear 
was a linear dimensional loss of material over a 
sliding distance. Wear of material has recorded 
using linear variable differential transformer 
(LVDT) with measurable unit is µm [27]. The 
weight loss has been converted in to volume 
loss. Wear rate has signified the loss of material 
with specified time of abrasion. The ratio of 
volume loss to sliding distance is known as wear 
rate. The unit of wear rate is mm3/m [17,28]. 
Coefficient of friction (COF) has also been 
calculated from frictional forces per unit normal 
load, for better results mean of the COF has been 
considered. The worn-out surfaces of composite 
were examined by SEM (Model no: JEOL JSM-
5600LV). The results are depicted in Section 4 
(Results and Discussion). 
 

2.7 Experimental Design 
 

The experiments are intended based on Taguchi’s 
(L27) orthogonal array. The experimental design 
comprises three factors such as load, % of CSAp 
and sliding distance and their levels as shown in 
Table 3. In Taguchi L27 design, the column 1st and 
2nd was assigned to the load and % of CSAp 
respectively. To avoid overlapping and aliasing of 
interactions with columns factors, 3rd column was 
modified to the 5th column for a parameter, 

sliding distance. Therefore, 3rd and 4th columns 
have been allocated to the relations of the load 
and %of CSAp i.e. (L x R). Similarly, 6th and 7th 
columns have been assigned to the relations of 
load and sliding distance (L x D). The columns 8th 
and 11th are consigned for the interaction of % of 
CSAp and sliding distance (R x D). Remaining 
residual columns are assigned to error conditions 
[14,16,29]. Therefore, the designed Taguchi 
orthogonal array decides to select the runs in 
random order and to complete in the three 
consecutive repetitions for the experimental runs. 
Moreover, three responses such as wear, wear 
rate, and coefficient of friction were computed 
base on the L27 design. The results are shown in 
Table 4. The responses are described as quality 
attributes. 

 
Table 4. Experimental results of Taguchi (L27).  

Run L R D 
Wear(

µm) 

Wear 
rate 
*10-3 

Coefficient 
of friction 

1 10 5 1000 191 5.556 0.298 
2 10 5 2000 193 2.815 0.188 
3 10 5 3000 385 2.173 0.168 
4 10 10 1000 185 5.000 0.285 
5 10 10 2000 180 2.423 0.175 
6 10 10 3000 210 2.159 0.148 
7 10 15 1000 165 3.462 0.234 
8 10 15 2000 175 2.327 0.165 
9 10 15 3000 268 1.936 0.372 

10 30 5 1000 380 6.333 0.415 
11 30 5 2000 391 3.222 0.354 
12 30 5 3000 478 2.704 0.293 
13 30 10 1000 310 6.500 0.385 
14 30 10 2000 285 3.115 0.325 
15 30 10 3000 460 2.436 0.275 
16 30 15 1000 268 5.808 0.372 
17 30 15 2000 312 3.115 0.309 
18 30 15 3000 426 2.321 0.225 
19 50 5 1000 480 7.111 0.641 
20 50 5 2000 521 4.167 0.485 
21 50 5 3000 685 4.012 0.395 
22 50 10 1000 415 6.923 0.636 
23 50 10 2000 505 3.962 0.4565 
24 50 10 3000 525 2.846 0.392 
25 50 15 1000 398 6.615 0.62 
26 50 15 2000 468 3.654 0.444 
27 50 15 3000 478 2.641 0.378 

 
Usually, Taguchi method is used to optimize the 
single response only; it cannot optimize multiple 
responses effectively. Therefore, it is necessary to 
convert multiple responses into equivalent single 
response for the successful implementation of the 
Taguchi approach to achieve best optimal 
parameter setting. Due to this reason, grey 
relational analysis has been used to convert 
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multiple responses into a single response. Grey 
theory also handles the uncertainty as well as 
vagueness in the physical variability of the input 
data. However, to validate the consistency of the 
obtained results, it is necessary to test for fuzzy 
logic approach. Therefore, the fuzzy logic concept 
has also been incorporated into handling the 
uncertainty involved in the process parameters.  
Hence, the obtained results were compared with 
grey relational grades to confirm the optimal 
performance. 
 
2.8 Grey Relational Analysis (GRA) 

 
The GRA is a technique which is used for 
handling the uncertainty of multiple variables 
and discrete data [36]. The procedural 
sequences of GRA are as follow:   

Step-1: 

The responses have been initially pre-processing 
the data by normalization to reduce 
inconsistency. The normalized values are used 
to transfer original to comparable sequence. 
These results should vary in between {0, 1}. If 
the value of target is infinite at original 
progression, then the original sequence of 
characteristic followed by the higher-is-better; 
smaller-the-better and definite value of target 
(desired value) criteria [19,21,30]. 

 
When smaller-is-the-better, original sequence 
could be normalised as follows: 
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are the greatest and least values of 

(n)yk  for nth response. Experimental runs (k=1, 

2 ...) and number of factors (n=1, 2 ... n). 

Step-2:  

Thereafter, determination of normalization to 
calculate the grey relational coefficient is as 
follows: 
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Where (n) 
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  represents the deviation 

sequence from the reference sequence, which 

can be computed by the difference between 
(n) 

k
 xand (n)

o
x with absolute significance. 

Distinguishing coefficient ( ) value is 

considered based on distinguished ability. 
Generally, the value of distinguishing coefficient 
( ) is taken as 0.5. 

(n) kx-(n)ox=(n)
ok

                     (3) 

Step-3: 

The grey relational grades (GRG) can be 
calculated by the average of grey relational 
coefficients (GRC) for each objective of 
responses.  

(n)
n

k
1=k

k
 

n

1
=

k
                         (4) 

The GRG value indicates the overall performance 
index. Higher the value of GRG, the better is the 
performance. 
 
2.9 Grey – Fuzzy Reasoning Analysis 
 
Fuzzy logic deals with uncertainties and permits 
the assimilation of the options on making an 
appropriate decision. Moreover, fuzzy logic is a 
mathematical tool, utilized to handle the 
imprecision, uncertainty, and vagueness in the 
human judgment process [27,30-31]. The 
uncertainty due to physical variability of various 
input process parameters can be tackled by the 
fuzzy reasoning approach. Therefore, fuzzy logic 
mainly consists of three elements such as 
fuzzifier, inference engine with the knowledge 
base and defuzzifier. The main function of 
fuzzifier is to convert the inputs towards a crisp 
form which contain specific information about 
the linguistic variables. In addition, fuzzifier uses 
input data onto inexact query and expresses in 
fuzzy variables based on the membership 
function. The fuzzy membership grade lies in 
between {0, 1}. Fuzzy inference system contains 
two types of knowledge bases which are 
Mamdani and Sugeno. The knowledge base 
contains rule and database. The database refers 
the number of membership functions handling 
fuzzy set while rule base includes logical 
operations like IF-THEN laws. The inference 
scheme to perform interference with operations 
based on the rules. Defuzzifier provides the 
required productivity from the fuzzy system in 
the form of firm data. The method of 
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defuzzification uses the center of area (COA) 
technique to calculate the firm output. The fuzzy 
logic approach must provide the better 
performance due to the minimum vague output 
than the GRG apart [21,30] . Therefore, fuzzy 
logic combined with GRA to obtain the grey 
fuzzy reasoning grade (GFRG) and that must be 
more than GRG [21,30,32–34]. 
 
 
3. RESULTS AND DISCUSSION  
 
3.1 Mechanical properties of Al-CSAp MMC 
 
XRD profile (Fig. 2) reveals that coconut shell 
ash contains crystalline phase elements with 
variation in peak intensity. XRF revealed 
chemical compositions of CSA which are shown 
in Table 2. SiO2 (Silicon oxide), Al2O3 (Aluminium 
oxide) and Fe2O3 (Ferric Oxide) are the major 
and MgO (Magnesium oxide) CaO (Calcium 
oxide) and K2O(Potassium oxide) are minor 
constituents of the CSA. The oxides like SiO2, 
Al2O3 and Fe2O3 make the matrix harder and 
more durable which results in improved 
physical-mechanical properties. Al2O3 and SiO2 
are well-known reinforcing additives for 
improving wear resistance and strength for Al-
MMCs. CaO could react with alumina and silica 
to form aluminates and calcium silicates, which 
have good adhesive properties and improve to 
load bearing capability of the composites [35]. 
MgO is a refractory material, which can 
withstand high temperature and has a low 
thermal conductivity [36]. The XRD peaks show 
the existence of carbon, apparently in the 
outward appearance of graphite.  
 

 
Fig. 2. XRD of Coconut Shell Ash. 

 

Figure 3 shows the reinforcing particles of CSA 
and shape respectively. From Fig. 3, the 
reinforcing particle (CSA) has been seen to have 
spherical shape; an average size of 42 µm with a 
density 2.04 g/cm3. 
 

 
Fig. 3. SEM of CSA particulates. 

 
The hardness of Al-CSAp composites increased 
due to the hard phase of CSA particle in addition 
to the homogeneous distribution of CSAp within 
the Al-Si-Fe matrix. Composite properties were 
enhanced due to the presence of alkali earth 
metal such as CaO and MgO in CSA. Elemental 
analysis of a composite was examined with SEM-
EDX, shown in Fig. 4. The tensile strength 
increased with increases in volume fraction of 
CSA particle. Moreover, a decrease in elongation 
was noticed with the addition of CSA particles. 
The hardness of composite increased by 6.08, 
26.62 and 29.87 % at 5, 10, 15 % of CSA 
additions, respectively as compared to 
unreinforced metal (Al-Si-Fe). 
 

 

Fig. 4. Elemental analysis of Al-CSA composite.  
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Tensile strength and percentage elongation are 
directly and indirect proportional characters to 
the reinforcement. The properties of composites 
are enhanced due to strain hardening of the 
composite as observed in Table 5. Moreover, 
with the addition of reinforcement, tensile 
strength significantly increased from 91 Nmm-2 
of unreinforced Al-Si-Fe to 143 Nmm-2 at 15 % 
CSA additions. Similarly, density of composite 
decreased by 1.85, 3.69, and 5.90 % at 5, 10, and 
15 % of CSA, respectively as compared to Al-Si-
Fe.  Reinforcement particles are hard phase 
protrusions which absolutely prevent the matrix 
from surface abrasion due to cutting action of 
the disc.  Moreover, it increases the load bearing 
capability, constraints dislocation movement, 
reduces inter planar pacing and makes the 
dislocation movement critical. 
 
Table 5. Mechanical Properties of Al-CSA-MMCs. 

Composite HV 
Density UTS 

% of 
Elongation. 

(g/cm3) (N/mm2) (mm) 

Al-Si-Fe 58.26 2.71 91 29.7 

Al-5%CSA 62.03 2.66 102 23.3 

Al-10%CSA 79.4 2.61 127 18.3 

Al-15%CSA 83.07 2.55 143 16 

 

 
a)                                       b) 

 
c)                                       d) 

Fig. 5. Microstructure of (a) Al-Si-Fe (b) Al-5 % of 
CSA (c) Al-10 % of CSA (d) Al-15 % of CSA. 

 
3.2 Metallographic and Surface Morphology 
 
The microstructures of the pure and reinforced 
MMCs are presented in Fig. 5. The metallography 
images observed are bright area specifying the 
matrix and the dark area specifying 
reinforcement particles. The distribution of 
particles in the microstructure observed to be 

uniform. From Fig. 5a, it justifies equiaxed 
dendrite structure. Similarly, Fig. 5(b-d) 
revealed that addition of CSA to Al-alloy caused 
a grain refinement which could be responsible 
for enhancement in the tensile strength of the 
composite [37-38]. 
 
Table 6. The Grey relation coefficient and grey 
relational grade for quality attributes. 

 
GRG Coefficients 

  
Trails Wear 

Wear 
rate 

Coefficient 
of friction 

GRG 
GRG 
Rank 

ζ1 0.909 0.417 0.622 0.649 12 
ζ2 0.903 0.746 0.86 0.837 4 
ζ3 0.542 0.916 0.925 0.794 5 
ζ4 0.929 0.458 0.643 0.676 9 
ζ5 0.945 0.842 0.901 0.896 3 
ζ6 0.852 0.912 1 0.921 2 
ζ7 1 0.629 0.741 0.79 6 
ζ8 0.963 0.869 0.935 0.922 1 
ζ9 0.716 1 0.524 0.747 7 

ζ10 0.547 0.37 0.48 0.466 22 
ζ11 0.535 0.668 0.545 0.583 16 
ζ12 0.454 0.771 0.63 0.618 14 
ζ13 0.642 0.362 0.51 0.505 20 
ζ14 0.684 0.687 0.582 0.651 11 
ζ15 0.468 0.838 0.66 0.656 10 
ζ16 0.716 0.401 0.524 0.547 18 
ζ17 0.639 0.687 0.605 0.644 13 
ζ18 0.499 0.871 0.762 0.711 8 
ζ19 0.452 0.333 0.333 0.373 27 
ζ20 0.422 0.537 0.422 0.461 24 
ζ21 0.333 0.555 0.499 0.463 23 
ζ22 0.51 0.342 0.336 0.396 26 
ζ23 0.433 0.561 0.444 0.479 21 
ζ24 0.419 0.74 0.503 0.554 17 
ζ25 0.527 0.356 0.343 0.409 25 
ζ26 0.462 0.601 0.454 0.506 19 
ζ27 0.454 0.786 0.517 0.586 15 

 
3.3 ANOVA of GRA 
 
From the GRA, the quality attributes are 
normalised (n)) (Xk

to maintain the consistency. 

The values are lied in between {0, 1}, followed 
by Eq. 1. Then, the GRC has been calculated 
using Eq. 2. Afterwards, the GRG is determined 
using Eq. 4. The obtained results of GRC and GRG 
have shown in Table 6. The GRG value indicates 
the overall performance index of individual 
experimental run. The experimental run eight 
indicates the highest GRG value, which 
represents best performance. The effects of each 
individual factor at every level are shown in 
Table 7. It revealed that the load (L) was the 
most influencing factor at level-1 (10 N) 
followed by sliding distance (D) at level-3(3000   
m) and % of CSAp (R) at level-3 (15 %). The 
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highest average grey relational grade for each 
optimal parameter state for minimal quality 
attributes has been found as L1R3D3.  
 
Table 7. Response Table for GRG. 

Level L R D 
1 0.8037 0.5825 0.5345 
2 0.5976 0.6371 0.6642 
3 0.4695 0.6512 0.6721 

Delta 0.3342 0.0686 0.1376 
Rank 1 3 2 

 
ANOVA (Table 8) revealed that the load (73.90 
%) was higher influencing parameter followed 
by sliding distance (17.74 %) and % of CSAp 
(3.73 %). The contributions of overall factors are 
performed 97.9 % of the total variance in GRG. 
Contributions of percentage are estimated 
through sum of square of deviation divided by 
the total mean of GRG. 
 
Table 8. Analysis of Variance for GRG. 

Source DF Seq SS Adj SS Adj MS 
F - 

Value 
Contri. 

(%) 
L 2 99.54 99.54 49.77 142.67 73.9 
R 2 5.03 5.03 2.51 7.21 3.73 
D 2 23.90 23.90 11.95 34.26 17.74 

L*R 4 0.35 0.35 0.09 0.25 0.26 
L*D 4 2.27 2.27 0.57 1.62 1.68 
R*D 4 0.82 0.82 0.21 0.59 0.61 

Error 8 2.79 2.79 0.35 
 

2.07 
Total 26 134.70 

   
100 

S = 0.5906   R-Sq = 97.9 %   R-Sq(adj) = 93.3 % 
DF: degree of freedom; SS: sum of squares; MS: Mean sum 

of squares ; Contri.: contribution  

 

 
a) 

 
b) 

Fig. 6. Membership function and Fuzzy subset used 
for GFRG. 

 
Fig. 7. Computation of GFRG for Experimental Run 10. 

 
3.4 Grey – Fuzzy Reasoning Analysis (GFRA) 
 
The three normalized quality attributes are used 
as inputs for fuzzy controller. Three fuzzy 
linguistic variables (Fig. 6a) are used as input 
variable and nine linguistic variables (Fig. 6b) 
are used as output by which 27 rules can be 
formed to attain the GFRG using MATLAB 7.0 
software. The input variables are required to 
fuzzify using suitable linguistic ideals. 
Afterward, the defuzzification is executed by the 
COA method for estimating the firm value 
(output) as GFRG. The GFRG value for a 
particular experiment (Expt. No. 10) is shown in 
Fig. 7.  Similarly, for all 27 experiments, the 
GFRG values are listed in Table 9.  
 
Table 9. Grey fuzzy reasoning grade with ranks. 

Run GFRG 
GFRG  
RANK 

Run GFRG 
GFRG 
 RANK 

1 0.651 11 15 0.658 10 
2 0.832 5 16 0.549 17 
3 0.875 4 17 0.591 14 
4 0.672 9 18 0.74 7 
5 0.923 3 19 0.389 27 
6 0.929 2 20 0.5 20 
7 0.745 6 21 0.47 24 
8 0.938 1 22 0.398 26 
9 0.728 8 23 0.5 21 

10 0.486 23 24 0.558 16 
11 0.53 18 25 0.414 25 
12 0.609 13 26 0.5 22 
13 0.502 19 27 0.576 15 
14 0.63 12 
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On the comparison of grey relational grade 
(GRG) presented in Table 6 with grey-fuzzy 
reasoning grade (GFRG) (Table 9), it is observed 
that GFRG values are improved which reduces 
the uncertainty of statistical values. From the 
main effect plot (Fig. 8), it can be observed that 
the GFRG are high at the level of L1 (Load-10 N), 
R3 (% of CSAp -15 %) and D3 (Sliding Distance -
3000 m). From the statistical analysis, the input 
variable combination (L1R3D2) such as load of 10 
N, % of CSAp of 15 and sliding distance 2000 m 
produced the highest GFRG value of 0.938. It is 
closer to the reference value of ‘1’. This reflects 
the significant effect on GFRG. The GRG and 
GFRG values for all the experimental design is 
shown in Fig. 9. ANOVA of GFRG (Table 10) 
revealed that the load (72.83 %) was the highest 
influencing parameter followed by sliding 
distance (18.36 %) and % of CSAp (2.21 %). The 
contributions of overall factors are obtained 
96.68 % of the total variance in GFRG.  

 

 
Fig. 8. Response graph for GFRG value. 

 
Table 10. Analysis of Variance for GFRG. 

Source DF 
Seq  
SS 

Adj 
 SS 

Adj  
MS 

F –  
Value 

Contri. 
 (%) 

L 2 95.71 95.71 47.85 87.69 72.83 
R 2 2.91 2.91 1.45 2.67 2.21 
D 2 24.12 24.12 12.06 22.1 18.36 

L*R 4 0.89 0.89 0.22 0.41 0.68 
L* D 4 2.6 2.6 0.65 1.19 1.98 
R* D 4 0.82 0.82 0.2 0.37 0.62 
Error 8 4.37 4.37 0.55 

 
3.32 

Total 26 131.42 
   

100 
S = 0.7387   R-Sq = 96.7 %   R-Sq(adj) = 89.2 % 

 
3.5 Effect of Responses and Wear 

Behavioural Parameters on GFRG 
 

The dissimilarity of wear behavioural limits of 
response on GFRG is illustrated in Figs. 10 and 11, 
respectively. It revealed that, Fig 11 showed GFRG 
values at various interaction levels which were 
high at L1R2, L1D3, and R3D1, whereas a minimum 
was achieved at L3R1, L3D1, and R1D3. Figure 11a 
shows that while % of CSAp increases GFRG 
increases with decreasing load. At the condition of 
10 % CSAp and load 10 N, the GFRG value is high 
(0.923), at inferior load and higher volume fraction 

of Al-CSA composites has resistance to dislocation 
movement of slipping planes (plastic deformation) 
due to harder phase reinforced particulates (CSA). 
Moreover, this increases the yield strength with 
distinct barrier possibly pitched obstruent of 
dislocation [1,39-40]. Therefore, GFRG increases 
with increase in reinforcement which prevents the 
movement of dislocations. The hardness of 
composites has been increases with increase of 
CSA. Similarly, the GFRG value is least (0.389) at 
the condition of 5 % of CSAp (lowest 
reinforcement) and maximum load (50 N).  
 

 
Fig. 9. Evaluation of grey relational grade and grey-
fuzzy reasoning grade. 

 

 

Fig. 10. Variation of Grey-fuzzy Reasoning Analysis 
(GFRA) on GRC of response. 

 
From Fig. 11b, it is observed that at a constant 
sliding speed, the GFRG value is inversely 
proportional to the load and directly proportional 
to sliding distance. Generally, Wear is directly 
proportional to applied load. The matrix has 
become harder due to the addition of reinforced 
particles (CSA), thus prevents direct metal- metal 
contact. The reinforced particles (CSA) lie 
between tribo surfaces (i.e. pin and disc), reduces 
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coefficient of friction. Due to hardness of 
composite, wearing of steel disc occurs hence to 
form a layer (oxide) on counter face due to the 
transfer of iron oxide particles from disc to pin. 
Similarly, while sliding a mechanically mixed 
layer (MML) appears at the steel disc due to the 
presence of graphite in the form of crystal; this 
enhances the wear resistance of composite. 
However, while neither increasing speed nor 
sliding distance, the reinforcement particles were 
come out from the matrix. The harder particles 
were laid on contact surface and reduced 
frictional forces between tribo-surfaces. Even if 
load increase the particles were wrecked and the 
protective layer (i.e. oxide layer and MML) among 
tribo-surfaces also diminished in a shorter 
interval of time [10,41,42]. Hence, wear rate and 
coefficient of friction has increased.    

 

 
a)                                                   b) 

 
c) 

Fig. 11. Effect of Grey -Fuzzy Grade (GFRG) on wear 
behavioural parameters (a) load vs. % of CSAp on 
GFRG (b) Sliding distance vs. Load on GFRG (c) % of 
CSAp vs. sliding distance on GFRG. 

 
The GFRG value is high (0.875) at the condition of 
least load (10 N) and highest sliding distance 
(3000 m). Similarly, at maximum load of 50 N and 
least sliding distance of 1000 m, the value of GFRG 
is small (0.414). The combined effect of sliding 
distance and the volume percent of reinforcement 
effect on GFRG is shown in Fig. 11c. At constant 
percentage of reinforcement, the sliding distance 
increases with decreases of GFRG. GFRG value is 
high (0.745) at 15 % volume of CSAp with a sliding 
distance of 1000 m whereas GFRG is low (0.5) at 5 
% of CSAp and sliding distance of 3000 m. The 
GFRG is increased with increase of reinforcement 
(CSAp) which enhances the strength of the 
developed MMC. At an inferior coefficient of 

friction, the composite may be attributing to form 
a thin film between tribo surfaces, performing like 
self-protective layer.  

 
Table 11. Results of wear behaviour performance 
with initial and optimal setting of parameters. 

PC L1R1D1 L1R3D3 Gain Imp. (%) Error 
GFRG 
exp. 

0.651 
0.728 0.077 10.58 

0.156 
GFRG  
pre. 

0.884 0.233 26.35 

GRG exp. 
0.649 

0.747 0.098 13.09 
0.133 

GRG Pre. 0.88 0.231 26.23 
Wear 191 268 77 28.73 

 
Wear 
Rate 

5.556 1.936 -3.62 65.16 

Coeff. 0.298 0.372 0.074 19.89 
PC - Performance characteristics; exp. - experimental; 

Pre. - Predicted; Coeff. - Coefficient of friction;               
Imp. – Improvement 

 
 

4. CONFIRMATION TEST: 
 
The predicted GFRG (η ) at optimal rank of 

factors is considered by Eq. 5. 


n

1=k

)mη- kη(+
m
η=

predicted
η           (5)  

Whereas 
m
η is the mean of GRG of all the 

experimental runs, 
k
η  is the mean of optimal 

value of kth experiment, and n is the number of 
index factors. 
 
The experiment number one is considered as the 
initial conditional parameters (L1R1D1) which can 
be observed in Table 4. The results of 
confirmation test shown in Table 11 that specifies 
the initial parameters of GFRG value is 0.651 and 
an optimal parameter of predicted GFRG is 0.884. 
The wear is increased from 191 to 268 µm and 
wear rate is reduced from 5.556 to 1.936. 
Consequently, the coefficient of friction is 
improved from 0.298 to 0.372. Therefore, wear 
resistance and coefficient of friction were 
improved by 28.73 % and 19.89 %, respectively. 
In addition, wear rate is reduced by 65.16 %. 
Thus, GFRG in wear behavioural parameters of 
CSAp composites has better improvement (0.233) 
by using grey-fuzzy reasoning approach (GFRA) 
and error is less than ±5, which is significant.  
 
In this section, a comparative study of prepared CSA 
composites with pure alloy is analyzed. The 
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scanning electron microscope (SEM) photographs 
of unreinforced alloy and CSA composites are tested 
under the condition of constant load (30 N) and 
sliding distance (2000 m) with velocity (1.5 m/s).   
 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

Fig. 12. SEM worn-out surfaces (a) pure (b) Al-5 % of 
CSA (c) Al-10 % of CSA (d) Al-15 % of CSA (e) optimal 
condition. 

 
From Fig. 12, it can be observed that the particle 
pull-outs, micro cutting, deep penetration (groove) 
formation and fracture surfaces are present in the 
composite worn-out surface. Thus, it confirms the 
wear mechanism has occurred between pin and 
counter face. Figure 12a (SEM of unreinforced 
alloy) shows the worn-out surface in the form of 
wider grooves, deep cuttings and some micro 
cracks that can be observed in the region parallel 
to the sliding direction. Moreover, two different 
kinds of wear region observed in unreinforced 
alloy i.e. adhesion (A) and abrasion (B).  The 
coefficient of friction is high at beginning, hence 
the movement between pin and disc becomes 
difficult. However, temperature is raised in the 
base matrix due to high frictional forces which 
cause softening of the material and leads to plastic 
deformation. This affects wear loss. The wear loss 
increases due to the loss of material. It can be 
viewed in the form of debris. The cracks are 
formed due to the deep recess effect exerted by the 
hardened debris of the matrix. 
 
Similarly, Figs. 12b-d show the SEM of the 5 %, 10 
%, and 15 % worn out surface of CSAp reinforced 
Al-MMCs. Moreover, it is confirmed that as the % 
of reinforcement increases, the composite 
become thermally stable and its hardness is 
improved due to plastic deformation.  Due to this 
reason only, the composites could withstand the 
effect of wear rate. The composite is tested under 
the condition of optimal setting (L1R3D3) which 
can be understood from the worn-out surface 
shown in Fig. 12e. From the morphology, the 
grooves are very fine and the plastic deformation 
at the edge of grooves is less. So, at the above 
optimal condition, the material withstood the 
effect of friction and wear. 
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5. CONCLUSIONS 
 

In this paper, the CSAp reinforced aluminium 
composites were developed by compo casting 
technique at 5, 10 and 15 % by volume. The tensile 
strength and hardness both increase with 
increases of % of CSAp whereas % elongations and 
density decreases. The wear behaviour of 
composite is analysed considering three quality 
attributes with three input process parameters 
such as load, % of CSAp and sliding distance. The 
wear behavioural parameters are optimized with 
respect to the grey relational grade to accomplish 
the reduction of wear and weight loss due to 
friction and improves wear rate. Here, a hybrid 
(Grey-fuzzy) optimization technique has been 
adopted to find the optimal levels of input 
parameters by using Taguchi’s orthogonal array 
(L27). From the statistical analysis, the input 
parameter combination (L1R3D2) such as the load 
of 10 N, % of CSAp of 15 and sliding distance 2000 
m provides a highest GFRG value of 0.938. It is 
closer to the value of reference ‘1’. This reflects the 
significant effect on GFRG. From the ANOVA test, 
the optimal condition obtained (L1R3D3) which 
indicates the load of 10 N, % of CSAp of 15 and 
sliding distance 3000 m. The load (72.83 %) is the 
highest influencing parameter followed by sliding 
distance (18.36 %) and % of CSAp (2.21 %). The 
contributions of overall factors are performed 
96.68 % of the total variance in GFRG. From the 
GFRG optimal condition, the wear is increased 
from 191 to 268 µm, wear rate is reduced from 
5.556 to 1.936 and coefficient of friction is 
improved from 0.298 to 0.372 respectively. 
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